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Abstract—In-network ML-based traffic classification using
programmable switches has enabled faster decisions and reduced
security infrastructure’s cost and management overheads. How-
ever, due to constraints on per-packet operations and limited
stateful memory in the switch data plane, there is a fundamental
tradeoff between classification accuracy and memory require-
ments. The existing work falls short of accurately classifying
traffic with diverse flow characteristics while keeping the mem-
ory footprint low. In this paper, we propose AdaFlow system
that aims to address this gap by incorporating traffic-specific
heuristics while designing the in-network classifier. We evaluate
AdaFlow prototype via simulations and also on a testbed with
an Intel Barefoot Tofino switch. Compared to the state-of-the-
art, AdaFlow improves accuracy while keeping the memory
overheads similar to or lower than the existing systems.

I. INTRODUCTION

Programmable switches have enabled line rate in-network
traffic classification [1]–[6] by deploying decision tree based
supervised ML models directly to the data plane. Compared to
the approaches classifying traffic at the control plane [7], line
rate traffic classification entirely in the data plane has enabled
faster decisions [8] and reduces the cost of building and man-
aging security infrastructure. However, due to limited switch
memory (10s of MBs [9]) and compute restrictions there is a
fundamental tradeoff between the line rate classifier accuracy
and the switch data plane resources. Therefore, designing
a memory-efficient classifier while maintaining accuracy for
traffic with diverse flow characteristics is important and an
active research area.

Some existing in-network classification systems perform
inference using either packet-level (PL) features [1], [2],
[10], [11] (e.g., packet length, IP address) or flow-level (FL)
features [3], [12]–[15] (e.g., average packet size, minimum
IAT, etc.). Using only PL features keeps data plane resource
overheads low as there is no state to maintain across packets
(on the other hand, FL features require maintaining state), but
it has poor classification accuracy for tasks that require flow-
level (FL) features [4]. Systems using only FL features would
delay inference until the collected FL features are reliable
enough to infer a traffic class. This not only makes them
insufficient as they allow initial packets in a malicious flow
to go through as benign but also inaccurate as flow state may
get overwritten by new flows due to collisions before their
features become reliable1 and classified accurately [5].

1It has been found that prematurely classifying a flow based on FL features
may often be worse than using PL features [5], [16].

On the other hand, there are systems [4], [5] that perform
inference using both PL and FL features and handle flow-
level collisions. But NetBeacon’s [4] data plane module has
high memory overhead as it uses multiple ML models. Though
Jewel [5] is memory efficient by using a single unified ML
model in the data plane, it uses only a single inference point2,
thus it leads to poor accuracy for traffic with diverse flow
characteristics (a mix of short, long, benign, and malicious).
See §VII for details.

In summary, the existing work falls short of an in-network
classifier that accurately classifies traffic with diverse flow
characteristics while keeping the data plane memory footprint
low. Addressing this problem, in this paper, we propose a
general, memory-efficient, and accurate in-network classifier
called AdaFlow . AdaFlow achieves them by incorporating
traffic-specific heuristics on flow characteristics while training
ML models (§III) and while resolving flow-level collisions
using a priority-based mechanism (§IV).
The main contributions of this paper are:
Multi-phase Aggregated ML model. Packets in a flow are
located at different phases (e.g., packet counter) so each
phase has different FL feature values [4]. Upon collision
with an existing flow, PL feature values can be used for
inference. However, this requires separate ML models to be
deployed for PL features and PL+FL features which have a
high switch memory overhead. We address this problem by
designing a single multi-phase aggregated ML model. The
key idea is that the early packets of a flow use only PL
features for inference (until a threshold nth packet is reached)
while updating FL features in parallel. After the packet count
exceeds the threshold, we switch to inference using both PL
and FL features for every incoming packet (instead of a few
inference points) until the confidence score of inferred class
P (inferred class) exceeds a certain determination threshold
dt ∈ [0, 1]. We realize this idea by carefully augmenting data
while training ML models (more details in §III).
PrioritySketch algorithm. While resolving collisions in a
memory-constrained data plane, giving equal priority to all
flows would not give good classification accuracy across
different traffic datasets because of the diversity in their
flow characteristics. To address this problem, we design and

2A flow’s packet counter at which the flow’s class is inferred using PL and
FL features is called as inference point [4]. A packet counter value of a flow
denotes its phase.
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implement a traffic-specific eviction policy that decides which
flows to prioritize and which flows to evict upon a collision
(more details in §IV).
Profiler. Aggregated ML model and PrioritySketch algorithm
should be configured with traffic-specific parameters (e.g.,
thresholds, optimal hash table size, important PL + FL fea-
tures). Manually identifying optimal parameter values from
a large search space is time-consuming and error-prone. We
design and implement a profiler that automatically derives op-
timal configuration to maximize accuracy gains and minimize
switch memory usage (§V).
Evaluation. We evaluate AdaFlow prototype3 for various
traffic analysis datasets [17]–[25] and compare its performance
with most recent works [2]–[6]. AdaFlow improves classifi-
cation accuracy up to 7% compared to its best competitors
NetBeacon [4] and Jewel [5] while maintaining a similar
switch memory footprint as Jewel [5] (§VII).

II. ADAFLOW SYSTEM DESIGN

A. Design goals

System design should be general (D1) enough to support
a wide range of traffic analysis tasks for network security
while minimizing data plane memory resources (D2) and
maximizing classification accuracy (D3).

B. Overview of AdaFlow

Fig. 1 shows AdaFlow system workflow. AdaFlow has
two main components: AdaFlow data plane and a Profiler at
the controller. The system’s workflow has 7 steps. 1 The
profiler automatically derives a traffic-specific profile for a
given training trace (dataset) (e.g., CICIDS [17], Covert chan-
nel [18], [19]), thus satisfies D1. The derived profile has the
details of an optimal configuration that maximizes accuracy
(D3) while keeping the memory footprint low (D2). The profile
includes dataset-specific hyperparameter configuration, data
plane algorithm configuration, and a multi-phase aggregated
ML model with important PL and FL features. 2 The
controller configures the switch data plane according to the
profile such that the incoming packets ( 3 ) are processed by
AdaFlow data plane to collect PL and FL features 4 spec-
ified in the profile. 5 Next, flows are classified using their
features as input to a multi-phase aggregated ML model 6 .
The inferred class and associated confidence are used by 7
PrioritySketch to resolve collisions such that important flows
are prioritized (e.g., malicious flows for intrusion detection).

C. AdaFlow data plane

In this section, we walk you through packet execution paths
in the AdaFlow ’s data plane as shown in Fig. 1. Each path is
shown in a different color. AdaFlow skips processing those
packets that hit rules (⟨pkt.5t, class⟩) in the packet forwarding
table (Green path) and applies associated action (e.g., drop,

3The authors have provided public access to their code at
https://github.com/networked-systems-iith/AdaFlow.

send to the controller, forward). These rules represent the
decisions made after classifying a flow using AdaFlow . The
other three paths are triggered if a flow misses the packet
forwarding table.
Blue path. The flow ID storage is a hash table indexed by
flow ID, that is, pkt.5t (packet’s 5-tuple). If no collision4 with
the residing flow, then the first n−1 packets of the packet’s
flow follow the blue path, where n is the point at which the
inference is switched to include FL features in addition to
PL features. For these packets, AdaFlow extracts PL features
and checks whether timeout5 happened or RST/FIN flag is
set. If the condition is met, the packet follows the solid line:
fetches FL features, resets to PL features, infers its flow class
from the ML model (more details in §III), and the flow_ID
of malicious flows are sent to the controller as a digest
message. Upon receiving the digest, the controller installs
user-defined rules (via FU) (e.g., which action to take against
the subsequent packets with the same pkt.5t) in the packet
forwarding table. For malicious packets, the action could be
drop or send to a specific port for further analysis.

If the condition is not met, the path followed is shown in
a dotted line; FL features are updated and the current pkt is
classified using PL features until the packet count reaches n.
Finally, AdaFlow applies user-defined class-specific packet
processing rules, that is, if the packet’s class is determined as
malicious either drop or send to the controller, otherwise skip,
and forward to the next module in the data plane.
Orange path. When no collision is detected and the number
of packets of a flow exceeds n, the path is similar to the
solid blue path when the timeout condition is met. Otherwise
(dotted orange line), AdaFlow updates FL features and infers
the flow class using the ML model. If a flow’s class prediction
confidence crosses a determination threshold (P (y) > dt),
the flow’s priority flag in the flow priority storage is set to
0́’ (initially all are 1s). The updated priority enables colli-
sion handling in the PrioritySketch algorithm such that high
accuracy (D3) and low memory overhead (D2) design goals
are met (more details in §IV). In addition, AdaFlow data
plane shares flow ID and class ID with the controller and
applies user-defined class-specific packet processing rules as
mentioned earlier.
Red path. If an incoming packet collides with a residing flow,
the execution path depends on the residing flow’s priority
in the flow priority storage; priority = 1 (solid line) means
the residing flow is not classified (i.e., not yet reached the
determination threshold) and, thus prioritized as it does not
contain reliable FL features. In this case, the incoming pkt is
classified based on PL features. Whereas if the residing flow’s

4collision occurs when the index at which a residing flow is stored does
not match with h(pkt.5t), where h(.) is a hash function.

5We consider two timeout thresholds: idle (δidle) and active (δactive). Idle
timeout occurs when the difference between the current pkt timestamp and the
last seen packet timestamp of the residing flow exceeds δidle. Active timeout
occurs when the residing flow duration exceeds δactive. The rationale for
using active timeout is to evict persistent flows to achieve low resource usage
and high real-time traffic classification.



1

Profiler

Hyper-parameter
selection

Hardware
optimization

Controller

Feature 
engineering

Training
dataset Model selection

and
P4 build config

Profile

Control plane

Data plane design

Port forwarding

Incoming pkts

3

Ingress Interface

Program
m

able Parser

Ingress Pipeline
Stage 1 Stage n

Traffic M
anager

...
Aggregated ML Model Priority Sketch

priority = 1

PL + FL
features

PL
features

PL
features

PL
features

FL resetpriority = 0
reset to 1

Packet
forwarding

table

PL + FL
features

PL + FL
features

Digest

priority
 = 0

priority = 0Set priority = 0

Data plane

Offline Online

Deploy
Profile

Flow
update

(FU)

Calculate features Classify
flows

Flow state
(Feature + Class)

Retain important
flows

Priority Sketch
Aggregated  ML model

2

4 5 6 7

Priority Sketch Algorithm

Executed 
action

Condition

Flow 
ID

storage

Miss

Miss

Miss No collision

No collision

Set n = 1

Periodic 
memory
cleaning

Collision

Reset ID
to pkt.5t

Network

Hit

 

1 to 

Update FL
features

Per-flow
timestamp

storage

Flow
packet count

storage

PL
features

Flow 
priority
storage

Read FL
features +

resetTimeout/
RST/FIN Read FL

features +
reset

 Update +
read FL
features

FL
Features
Storage User defined

packet 
processing

Aggregated 
ML 

model

(Blue)

(Orange)

(Red)

(Green)

Fig. 1: AdaFlow system architecture

priority = 0, it means that the respective FL features are
sufficient enough to determine its class, thus the residing flow
can be replaced with the incoming packet’s flow. Accordingly,
the priority is reset to 1, the FL features are re-initialized
with the incoming packet’s PL features, and the user-defined
class-specific packet processing rules are applied. More details
of the PrioritySketch algorithm entailed by this path are
covered in §IV.

Controller. Apart from updating the packet forwarding table
upon receiving digests (FU), the controller also periodically
clears old entries in the packet forwarding table to avoid
overflow and clears the storage (i.e., register entries) in the
data plane.

Analysis. The rate at which the data plane forwards digests
(contains flow_ID and class ID) to the controller is propor-
tional to the sum of the flow completion rate, flow timeout
rate, and the rate at which flows reach their determination
threshold.

Implementation on PISA-based programmable switches
like Intel Tofino [26]. AdaFlow ’s data plane is care-
fully designed considering the hardware constraints of pro-
grammable switches. Our implementation complies with the
workflow Fig. 1. The position of storage resembles their
implementation using read/write on registers in the multi-
stage pipeline architecture like in PISA. The back arrow
paths resemble the resubmit mirrored pkt operation in the
pipeline. Due to the page limit, we omit the details of our
implementation on Tofino target.

In the next section, we present the design of our aggregated
ML model (§III) and the workings of the PrioritySketch
algorithm (§IV) during collisions (red path in the workflow).
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Training
dataset

Incoming
packet

Fig. 2: Sequential model: model Mi for ith phase is trained on ∪f∈FDf,i,
where Df,i corresponds to a set of flow features and the corresponding labels
for a flow f at ith phase. Strategy followed by NetBeacon [4].
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Fig. 3: Aggregated model. Strategy followed by AdaFlow .

III. MULTI-PHASE AGGREGATED ML MODEL

Packets in a flow are located at different phases6, so each
phase has different FL features [4]. Using PL and FL features
for inference, the ML model should be able to efficiently
classify flows at multiple phases (should have many inference
points7). Also, the PL features can be used for inference
when FL inference cannot be performed due to collisions.
However, this requires separate ML models to be deployed
for PL features and PL+FL features which have a high switch
memory overhead.

The key idea of our approach is to have a single ML model
that (i) relies on PL features for classifying early packets of
a flow (<n) while updating FL features in parallel, and (ii)

6A phase of a flow depends on the number of packets processed so far,
thus a flow can have as many phases as the number of packets. FL features
vary as the flow moves from one phase to another [4].

7Phases at which classification is performed and class is inferred are called
inference points.



Algorithm 1 Aggregated ML model training
Input: PCAP trace, trigger packet point n, set IS for storing dense inference
points to perform data augmentation, timeouts δidle and δactive, D denoting
set of dataset sample points.
Variables: PktCount denoting number of packets corresponding to a 5-tuple,
FeaturesFL denoting FL feature, FeaturesPL denoting PL feature, S denoting
a dataset sample, LastTime and FirstTime denoting latest and first timestamp
of pkts in a flow.
Output: Decision tree-based ML model
1: for pkt in trace do

// Obtain PktCount and check if there is timeout or RST/FIN flag set
2: ID ← pkt.5t
3: PktCountstored ← IncrementRead(PktCount, ID)
4: FirstTimestored ← Read(FirstTime, ID) ▷ Action(Reg, Idx, Value)
5: if FirstTimestored == 0 then
6: Update(FirstTime, ID, 0)
7: Update(LastTime, ID, pkt.time)
8: FirstTimestored ← Read(FirstTime, ID)
9: LastTimestored ← Read(LastTime, ID)

10: activeTimeout ← LastTimestored - FirstTimestored > δactive
11: idleTimeout ← pkt.time - FirstTimestored > δidle
12: timeout← activeTimeout or idleTimeout
13: flag ← pkt.RST or pkt.FIN
14: if timeout or flag then

// If timeout/flag, prepare samples using PL+FL features, and reset
features and timestamps. Sample weight depends on PktCount.

15: FeaturesFLstored ← Read(FeaturesFL, ID)
16: S ← ⟨pkt.5t,FeaturesPL,FeaturesFLstored, PktClass⟩
17: w(S)← max(1, ne

PktCountstored−1

n
−1)

18: D ← D ∪ S
19: Reset(PktCount, ID, 1)
20: Reset(FeaturesFL, ID, FeaturesPL)
21: Reset(FirstTime, ID, pkt.time)
22: Reset(LastTime, ID, pkt.time)
23: else if PktCountstored < n then

// Early samples of a flow are prepared only using PL features.
24: FeaturesFLstored ← ϕ ▷ ϕ is unattainable by FL features
25: S ← ⟨pkt.5t, FeaturesPL,FeaturesFLstored, PktClass⟩
26: w(S)← 1
27: D ← D ∪ S
28: Update(FeaturesFL, ID, FeaturesPL) ▷ Update FL feats
29: else if PktCountstored ∈ IS then

// IS denotes set of samples added at dense packet locations via data
augmentation. Samples formed using PL+FL features.

30: Update(FeaturesFL, ID, FeaturesPL) ▷ Update FL feats
31: FeaturesFLstored ← Read(FeaturesFL, ID)
32: S ← ⟨pkt.5t,FeaturesPL,FeaturesFLstored,PktClass⟩
33: w(S)← ne

PktCountstored
n

−1

34: D ← D ∪ S
35: else ▷ Update FL feats
36: Update(FeaturesFL, ID, FeaturesPL)
37: Decision tree based ML model trained on Dtrain ⊂ D and inference

rules derived. Finally, inference is done on Dtest = D −Dtrain.

once inference is switched to include both PL + FL features
(for packets ≥n), the model accurately monitors most of the
phases in a flow (see Fig. 3). To realize this idea, we carefully
use data augmentation while training the ML model. More
specifically, we augment the dataset to capture information of
a flow for a set of phases that are very closely spaced. For
instance, the training dataset could be augmented to capture
flow information at {2nd, 5th, 10th, 15th, 20th, ...} packet. The
model is trained on ∪f∈F ∪p∈P Df,p, where P corresponds to
a set of very closely spaced phases, D denotes training set, and
F denotes set of flows keyed by 5-tuple. In this way, we can
come up with a single model to be deployed in the data plane
while most of the (dense) phases are monitored accurately.
Thus, our design is memory efficient (D2) and more accurate

(D3) compared to the sequential model Fig. 2 (details in §VI).
Training algorithm. We show ML model training on a dataset
prepared from PCAP traces in Alg. 1. In lines 1 to 22, we
keep track of the number of packets in a flow based on pkt.5t
and also whether the flow is under a timeout or if there is a
FIN/RST flag. If the condition is met, the training sample S
is collected in D and FL features are reset. Next (lines 23-
28), if timeout or RST/FIN flag condition is not met and if the
number of pkts in a flow PktCount < n (where n is the packet
point at which we decide whether to switch to use FL features
in addition to PL features), we add a sample S containing only
PL features while assigning values unattainable by FL features
(ϕ) to the dataset D. Meanwhile, FL features are updated for
that flow but the sample is not prepared by using them. The
sample created using PL features is assigned a training weight
of 1. In lines 29-36, sample S with both PL and FL features is
added to the dataset D at every phase denoted by PktCount ∈
IS , where IS contains a set of very closely spaced phases or
packet points. Sample S is assigned training weight ne

PktCount
n −1

(works well for diversified use-cases8) whenever for that flow
sample PktCount ≥ n (higher weights to flows having more
packets). Finally (line 37), after D is formed, the ML model is
trained on Dtrain, and inference rules are derived and pushed
to the data plane. Then the design is tested on Dtest, where
D = Dtrain ∪Dtest.

In summary, our ML model design is a single aggregated
model that can capture the essence of both PL and FL features
by processing PL features in flow samples for early packets
(PktCount < n) and switching to flow samples with both PL
and FL information when PktCount ≥ n. The model is trained
on flow samples (IS) containing both PL+FL information at
closely spaced phases via data augmentation.
Additional details on training. We augment the training
dataset to obtain PL+FL features at packets: {n, n+∆, n+2∆,
..., n+k∆} ∪ 2i, where 2i ≤ n+ k∆. We obtain n, ∆ and k
via profiler in §V. The search space of ∆ should be such that
dense inference points are covered.
Implementation. A decision tree (DT) is trivial to implement
as there’s only one tree [3], [4] which can be converted to a
set of inference rules. To implement random forest, we use
individual feature tables, code tables (tree traversal paths),
inference class table, and majority voting tables [3]. For
xgboost, we decide the class by aggregating the confidence
score [4] (for each root-to-leaf paths) via sigmoid(.). Due to
the page limit, we keep the implementation details short.
Using ML model at runtime. Once the model is pushed
to the data plane, we classify early packets of flow (< n)
using PL features, and we classify flows at every packet ≥ n
using PL+FL features9 (Fig. 1) until the confidence threshold
is reached i.e., P (y) > dt or one of the eviction conditions
are met (timeout or RST/FIN flag).

8Terms datasets and use-cases have been used interchangeably.
9Some FL features (e.g., per-flow average or variance of pkt size) cannot be

obtained for all phases (they involve division). For such features, AdaFlow
calculates them for a few 2i inference points using bitwise shift like in [4].



IV. PRIORITYSKETCH ALGORITHM

We design PrioritySketch algorithm runs in the data plane to
resolve collisions efficiently and achieve high accuracy while
keeping the memory footprint low. One strawman solution to
resolve collisions is to simply evict the flows based on three
eviction conditions: idle timeout, active timeout, or flag-based
eviction. Upon collision with an incoming flow, if the residing
flow meets any one of the conditions, it is evicted and replaced
with the incoming flow. Otherwise, we ignore incoming flow
and simply update the flow features of the residing flow. This
approach is equivalent to giving equal priority to both flows,
thus random and may not prioritize important flows affecting
accuracy. A high collision rate with less memory would make
it even worse, thus having a further impact on accuracy.

We observe that for CIC-IDS2017 [17], [27] PCAP traces,
the collision percentage is 38% to 52% with 16K hash table
entries. With equal priorities to all flows, we may not be
able to exploit dataset-specific flow characteristics which could
improve accuracy. For example, for CICIDS Tuesday trace,
there are few malicious flows compared to benign flows
and most of the flows are short. In such an environment,
upon collision detection with a residing flow, giving higher
weightage to malicious flows over benign flows would improve
accuracy while still using less memory. Based on this idea, we
propose PrioritySketch algorithm which proactively identifies
potential flows that we wish to prioritize and keep their state
in the memory when an incoming flow collides with them.
Offline priority assignment. The parameter ”priority” con-
trols the flow retainability by assigning priority offline. As
mentioned earlier, a decision tree-based aggregated ML model
is deployed in the data plane in the form of inference rules.
One can visualize each rule r as a set of PL and FL feature
ranges and tagged with two values: an inference class y(r) and
confidence P (y|r) ∈ [0, 1]. A flow class is determined only
when P (y) > dt, where dt is the determination threshold.
This means flows with higher dt are classified with more
confidence.

We observe that an eviction policy based on a single deter-
mination threshold for both malicious flows and benign flows
would not give good classification accuracy across datasets
due to their difference in traffic characteristics such as the
percentage of long flows and the percentage of malicious
flows. Therefore, we consider two thresholds, dtM and dtB
for malicious and benign flows respectively, then we tag each
rule r with priority value as follows,

priority(r) =

{
1− 1{P(y = mal|r) > dtM} y(r) = mal

1− 1{P(y = ben|r) > dtB} y(r) = ben

If we assign different priorities to each of the flow classes,

priority(r) = 1− 1{P(y = c|r) > dtc} y(r) = c

where c ∈ [k] is a class label associated with rule r in the
k-class multi-classification problem. After all inference rules
are tagged with appropriate priority (either 0 or 1), we
update the ML model in the switch data plane.
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Active timeout
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engineering

Fig. 4: Profiler

Using priority at runtime. At runtime, when a flow exceeds
the determination threshold and is mapped to an inference
rule (r), the corresponding priority(r) value and the flow class
are retrieved. Also, the flow’s priority flag is updated in flow
priority storage as shown in Fig. 1. For instance, when the
majority of the flows are short and only a few of them are
malicious, high dtM (say 0.9) and low dtB (say 0.1) would
give good recall; since the majority of cached flows are benign
and benign flows are quickly evicted (i.e., priority=0) as their
confidence exceeds determination threshold much faster than
malicious flows, thus creates space for new flows. Whereas
the prioritized residing malicious flows (i.e., priority=1) most
likely collide with incoming benign flows, thus preserving
recall. We present more details on the algorithm’s performance
for different determination thresholds across datasets in §VII.

V. PROFILER

The complete workflow of the profiler component of
AdaFlow is shown in Fig. 4. Hyperparameter optimization
and hardware optimization blocks show a bunch of param-
eters we select from the space of configuration (some even
mentioned in [4], [5]). We explain the workflow by connecting
to Fig. 4 as follows:

1) For each configuration [hp, hw], we train an ML model
(following Alg. 1), MLa using the complete FL and PL
features from a dataset.

2) Next, we perform recursive feature elimination [28] by
iterating over the number of features derived using MLa
and obtain the best model MLb. This helps us arrive at
not only the optimum number of features but also those
that are most important.

3) Next, we try to fit the time-based features time feats in
the hardware memory by adopting the truncation strategy
used by [3] and get the best of all the candidate models.

4) Finally, we repeat steps 1-3 over the entire [hp, hw]
search space to obtain the best candidate model MLfinal
to be deployed on the target switch.

To select the best model, we maximize reward = α.F1-
score + (1 − α).(1 − ρ), where ρ denotes fraction of total
memory in target switch and α10 ∈ [0, 1]. The inference rules
derived from MLfinal are then pushed into AdaFlow data
plane. Note that the MLfinal model is selected based on final

10In our experiments, we keep α = 0.5 to maintain balance.



System
Accuracy Scalability

(Memory efficient) GeneralityFeatures Inference
points

Training
weights

Flow
prioritization

Mousika [2] PL ✗ ✗ ✗ ✗ ✗
Planter [1], [6] PL ✗ ✗ ✗ ✓ ✗

Flowrest [3] FL Single ✗ ✗ ✓ ✓
NetBeacon [4] PL+FL Sparse w(PL) = w(FL) ✗ ✗ ✓

Jewel [5] PL+FL Single w(PL) < w(FL) ✗ ✓ ✓
AdaFlow PL+FL Dense w(PL) < w(FL) ✓ ✓ ✓

TABLE I: Comparision of AdaFlow with related work. NetBeacon uses 4-
10 inference points while Jewel uses only 1 inference point. Jewel however
prioritizes PL+FL inference over PL-only inference, unlike NetBeacon which
assigns the same weights to all samples. Moreover, NetBeacon uses multiple
ML models. AdaFlow solves issues of both Jewel and NetBeacon using its
efficient ML model design in §III and PrioritySketch algorithm in §IV.
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Fig. 5: AdaFlow ’s aggregated model-based classifier outperforms Net-
Beacon’s sequential model-based classifier by 1.5-11%, and outperforms
Flowrest’s single inference-based classifier by 3-24%.

FL + PL features FLfinal + PLfinal as well as final configurations
hwfinal and hpfinal.

VI. COMPARISION WITH RECENT WORK

PL features or FL features. Mousika [2] and Planter [6], both
rely only on PL features for inference tasks. [4] shows that
without FL features, accuracy is poor for multiple use cases.
On the other hand, Flowrest [3] considers only FL features
for inference tasks but ignoring early packets affects accuracy.
Also, it uses a single inference point n to fix the inferred class
which does not work well for datasets with a mix of short and
long flows [20].
PL features and FL features. NetBeacon [4] relies on both
features but their data plane module consumes more memory
as it deploys multiple ML models (one based on PL and
FL features, another based on PL features, and another to
determine short or long flows). Also, NetBeacon uses few
inference points which affects accuracy. For instance, if the
inference is done at {2nd, 4th, 8th, 32nd, 256th, 512th,
2048th} packet, the inference of the 2047th packet and the
512th packet are the same, thus fails to monitor 1535 phases in
the middle. Jewel [5] proposes a unified ML model considering
both features; though this approach is memory efficient it has a
single inference point, thus hurting accuracy. Moreover, both
works do not have collision handling mechanisms. Whereas
AdaFlow achieves memory efficiency by carefully designing
the data plane module with a single aggregated model, resolves
collisions based on priority, and evicts flows at the right
time. In parallel, AdaFlow improves accuracy by using dense
inference points and by enabling dataset-specific determination
threshold configuration. We summarize the comparisons in
Table I. From Fig. 5, we observe AdaFlow’s aggregated
model-based classifier outperforms NetBeacon’s sequential
PL+FL model accuracy by 1.5-11% and reduces memory
usage by 15.68-78.39% (see §VII-C). More details on the
experiment setting are in §VII-B.

VII. EVALUATION

We evaluate AdaFlow to study its performance in terms
of classification accuracy and switch resource overheads. In
summary, compared to the state-of-the-art works, AdaFlow
improves F1 score consistently for various datasets while
keeping memory footprint low and minimal-to-zero impact on
packet-processing throughput.

A. Traces and metrics

Evaluation traces. We evaluate AdaFlow on four tasks11:
• Covert channel detection. The task identifies Covert

channel traffic encoded by two censorship resistance
tools, Facet [18] and DeltaShaper [19], from benign skype
traffic.

• P2P botnet detection. This task uses the PeerRush
dataset [20] which comprises flows produced by four
benign P2P applications (uTorrent, Vuze, Frostwire, and
eMule), and two P2P botnets (Waledac and Storm).

• DDoS attack detection. This task uses CIC-DDoS2019
dataset [21] which consists of a mix of benign traffic
and various real-time DDoS attacks (MSSQL, SSDP,
CharGen, NTP, TFTP, SYN Flood, UDP Flood, and UDP
Lag).

• Intrusion detection dataset. This task uses fixed version
of CIC-IDS2017 dataset [17], [27]. This dataset consists
of 5 IP traces: Monday (benign traffic), Tuesday (FTP and
SSH Patator), Wednesday (DoS and Heartbleed), Thurs-
day (Infiltration and Web-Attacks), and Friday (DDoS,
Portscan and Botnets).

Metrics. To understand AdaFlow’s classification perfor-
mance, we consider per-packet12 based F1 score13 given by

2TP
2TP+FP+FN . To understand switch overheads, we measure
memory utilization and packet recirculation overhead.

B. Classification Performance

This section presents the quantitative benefits of AdaFlow
’s aggregated ML model and the PrioritySketch algorithm
running in the data plane via simulations and experiments on
a real testbed with a Tofino switch.

1) Simulation results.
We simulate AdaFlow on a machine with 40-core, 2 x

Intel(R) Xeon(R) Silver 4316 CPU @ 2.30GHz, and 256GB
DDR4 memory. We have two variants of AdaFlow : dtM =
dtB = 0.8 and dt = [dtM , dtB ] optimized as per the profiler
called as AdaFlowOptimized. We compare AdaFlow variants
with NetBeacon (dt = 0.8), Flowrest, and Jewel. For all
the systems, we use optimized parameters derived using the
profiler with hash table entries set to 4096 for the covert

11We additionally introduce UNIBS [22], UNSW [23], ToN-IoT [24], and
IoT23 [25] in §VII-B2

12Metric is calculated on per-packet basis. For instance, if a flow consisting
of N packets is classified, then all those N packets share the same class. Any
flow containing N pkts that is unclassified (can happen in Flowrest [3] when
the flow is overwritten) due to collision is assumed to be incorrectly classified
(as in all such N packets being incorrectly classified).

13We consider F1 score averaged across all classes.



Tasks P2P app fgpt. Covert channel (Facet) Covert channel (Deltashaper) DDoS Detection CIC-IDS (Tuesday) CIC-IDS (Thursday)

ML model Random Forest XGBoost XGBoost XGBoost Random Forest Random Forest
Training flows 4,446,709 28,155 11,657 47,752 595,358 617,030
Testing flows 423,452 9034 3932 191,009 129,667 142,344
Class ratio (ben/mal) 10:1 1:1 1:1 6:1 100:3 1000:5
No. of inference rules 512 256 256 32 256 256
δidle , δactive 60s, 3600s 5s, 30s 5s, 30s 256ns, 2s 5s, 120s 5s, 120s

TABLE II: Experimental setting for simulations
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Fig. 6: Across four datasets, AdaFlow ’s F1 score is better than NetBeacon by 0.5-12.7%, Flowrest by 2.5-21.4%, and Jewel by 1.0-18.5%.

channel task and 65, 536 for the other 5 tasks. This is done for
fair comparison. Table II summarizes the AdaFlow ’s settings
for experiments across tasks.
Covert channel. Fig. 6a and 6b show the F1 score for delta
shaper and facet tasks, respectively. AdaFlow with dtM =
dtB = 0.8 outperforms NetBeacon with dt = 0.8 by 3-5%,
Flowrest by 5-10%, and Jewel by 4-7%. Since dtM = dtB ,
dataset-specific flow prioritization does not influence accu-
racy, thus the benefits are mainly due to the AdaFlow’s
aggregated ML model design. AdaFlow’s optimized version
leverages PrioritySketch ’s dataset-specific flow prioritization
by enforcing different determination thresholds, thus giving
an additional gain of 0-3%. The optimized version uses high
dt values (dtM = 0.93 and dtB = 0.84). Since most of the
flows are long flows with malicious and benign flows in equal
proportion, both types of flows would participate in storage
collisions. However, the collision rate is very low for this task
due to less number of concurrent flows (Table II). Thus it
is preferred to keep both dtM and dtB high for this task;
otherwise, low dtM or dtB would lead to poor accuracy due
to premature flow classification.
P2P botnet detection. From Fig. 6c, we observe that the F1
score of AdaFlow with dtM = dtB = 0.8 outperforms
NetBeacon with dt = 0.8 by 2-6%, Flowrest by 6-10%
and, Jewel by 4-8%. This is mainly due to the AdaFlow’s
aggregated ML model design as explained earlier. AdaFlow’s
optimized version gives additional gains of 2.5-5%. This task
has a mix of short and long flows where the majority are
benign flows. For flows with duration > 5s (about 23%), we
set dtM = 0.93 and dtB = 0.82, and for flows with duration
≤ 5s (about 77%), we set dtM = 0.78 and dtB = 0.66.
This is based on the observation that flows with less duration

are evicted sooner and hence their confidence exceeds the
threshold faster than flows with more duration. Lower dt for
such flows therefore does not affect accuracy. Flows with
more duration are less in number and have higher dt for
more accurate classification. We keep dtM > dtB since there
are much fewer malicious flows than benign flows, so most
collisions occur due to benign flows.
DDoS attack detection. AdaFlow with dtM = dtB = 0.8
outperforms NetBeacon with dt = 0.8 by 0-2%, Flowrest
by 2-4%, and Jewel by 1-2% (Fig. 6d). Whereas optimized
AdaFlow’s version with dtM = 0.92 and dtB = 0.89 gives
additional gains of 0.5-1%. This is because most flows are
classified accurately before a collision happens (accurate early
classification), thus high dtM and dtB values are preferred.
Intrusion detection for Tuesday and Thursday datasets.
From Fig. 6e and 6f, we observe AdaFlow with dtM =
dtB = 0.8 outperforms NetBeacon with dt = 0.8 by 6-
10%, Flowrest by 7-12% and Jewel by 6-11%. The optimized
AdaFlow version with PrioritySketch gives additional gains
of 2-11%. This version uses dtM = 1 and dtB = 0.37 for
Thursday trace, and dtM = 0.95 and dtB = 0.24 for Tuesday
trace. Low dtB and high dtM values are preferred for the
following reasons. The majority of the flows are short and only
a few of them are malicious. High dtM and low dtB would
give good recall; since the majority of cached flows are benign,
benign flows are quickly evicted as their confidence exceeds
the determination threshold much faster than malicious flows.
Whereas the prioritized malicious flows may most likely
collide with incoming benign flows, thus preserving recall
while maintaining precision. Further, since the majority of
flows are short, once a residing flow is classified as malicious
or benign (based on confidence), it remains the same until



Mousika Planter Flowrest NetBeacon Jewel AdaFlow
Covert 55.21% 58.78% 82.56% 87.88% 84.55% 93.63%

P2P fgpt 76.22% 77.74% 84.44% 92.27% 86.73% 95.46%
DDoS 83.49% 89.34% 96.59% 99.35% 99.27% 99.57%

Tuesday 72.43% 75.54% 85.53% 90.32% 89.05% 95.34%
UNIBS 90.35% 91.56% 96.40% 97.62% 98.35% 99.24%
UNSW 82.01% 79.85% 80.69% 84.58% 87.32% 93.57%

ToN-IoT 27.55% 70.49% 73.46% 78.05% 75.70% 85.22%
IoT23 86.05% 88.14% 82.85% 91.08% 91.31% 93.44%

TABLE III: F1 score for various datasets: AdaFlow gives up to 7% better F1
score than the second best system. As for the second best system, Jewel takes
the lead in UNIBS, UNSW and IoT23 by 0.2-3% while NetBeacon leads in
the rest of datasets by 0.1-6%. We use xgb-distilled (covert and DDoS) and
RF-distilled BDTs (rest of datasets) in Mousika [2].

its confidence exceeds the respective determination threshold.
Therefore, early eviction of benign flows due to low dtB would
not have much impact on precision. We get similar results for
Wednesday and Friday trace. Both the traces have equal mix
of benign and malicious flows, and most of the flows are short.
Thus, keeping both dtB and dtM as high is preferred.

2) Testbed results.
We conduct testbed experiments on 3.2 Tbps 12-stage

Tofino 1 ASIC. We replay PCAP traces via tcpreplay.
Further, we also inject benign background traffic from the CIC-
IDS2017 Monday trace (as non-target traffic) at 40 Gbps speed
(besides use-case traffic). This background traffic is not a target
for inference, hence this traffic is bypassed by the packet
forwarding table (as shown in Fig. 1). We demonstrate that the
presence of non-target traffic does not hinder the working of
AdaFlow. We compare the AdaFlow ’s optimized version
with each of the best versions of systems mentioned in
Table III. For each task, the same type of ML model is used
across systems (XGboost for Covert and DDoS, and random
forest for the rest). We observe that AdaFlow outperforms
the best competitor by 0.4− 7%.

Across tasks, the second-best system changes between
NetBeacon and Jewel14 (multiple sparse inference points vs
prioritizing FL+PL inference, see Table I). In detail, Jewel is
found to work well for datasets containing short flows where
a single reasonable inference might work well. Especially,
when there are high storage collisions, NetBeacon will use
PL-only inference for short flows while Jewel will prioritize
PL+FL inference leading to better accuracies. However, if
a dataset has diverse flow characteristics (e.g., a mix of
short and long flows), then using a single inference point
might not lead to good detection performance. It requires
multiple inference points for an accurate detection of diverse
flows. In this case, NetBeacon surpasses Jewel. In summary,
AdaFlow surpasses both Jewel and NetBeacon consistently
across multiple datasets due to ML model design (§III) and
PrioritySketch algorithm (§IV).

C. Switch overheads

Memory and compute overheads. We develop dataset-
specific prototypes of three systems (AdaFlow ’s optimized
version, Jewel, and NetBeacon) and deploy them on a Tofino
switch. Fig. 7 shows the resource overheads. Compared to

14Authors in their experiments assumed NetBeacon used only single tree
DT for all datasets while we normalized the ML models comparison (RF and
Xgboost) for fairness.

NetBeacon, AdaFlow consumes fewer resources (18.92-
78.39% TCAM, 32.67-52.45% SRAM, 15.68-44.6% sALUs,
52.89-60.14% VLIWs) while being at par with Jewel. Im-
provements over NetBeacon are mainly due to our single ag-
gregated ML model for PL and FL features (instead of multiple
individual models) and using natively supported range match-
ing primitive (instead of customized range marking primitive
which consumes more TCAM and SRAM resources).
Packet recirculation overhead. We measure overheads of
packet recirculation rate in terms of its impact on packet pro-
cessing throughput. We observe there is not much difference
in the throughput across the three systems. On a 40 Gbps
link, AdaFlow with dtM = dtB = 0.8 reported 39.63 Gbps,
39.65 Gbps, and 39.64 Gbps for P2P botnet, Covert channel,
and DDoS attack datasets, respectively. Whereas NetBeacon
reported 39.64 Gbps, 39.65 Gbps, and 39.67 Gbps, and Jewel
reported 39.63 Gbps, 39.66 Gbps, and 39.63 Gbps. Average
per-packet latency of AdaFlow across 7 datasets (Fig. 7) is
356 - 617 nanoseconds, confirming a sub-microsecond delay
for in-switch classification.

VIII. RELATED WORK

Classification at the control plane. Works [7], [29] in this
category extract FL features in the data plane but offloads traf-
fic classification to the control plane for fine-grained analysis.
They either use statistical analysis methods [29] or supervised
ML-based classifiers [7]. However, unlike AdaFlow, they are
not designed to achieve line speed (Tbps) classification leading
to increased latency and delay in making crucial decisions
to the incoming packets (drop, route to network, or route to
another module for further analysis).
Using rule-based classifiers. Works in this category use pre-
defined traffic filtering policies [30]–[32] to classify traffic
in data plane. Such works only deal with specific types of
traffic (e.g., DDoS attacks). In contrast, AdaFlow deploys
supervised decision-tree-based learning models to the data
plane which enables it to classify a wide range of network
traffic (generality).
Using supervised ML classifiers. Deploying machine learn-
ing models directly to the data plane is an emerging research
area. Works such as [2]–[6] deploy supervised decision-tree-
based ML classifiers (due to their model structure resembling
match-action pipeline of PISA based programmable switches)
directly in the data plane which enables them to classify
a wide variety of network traffic (at line speed) using FL
features extracted from the incoming packets. AdaFlow falls
in this line of work and improves classification accuracy while
keeping the data plane overheads low.

IX. CONCLUSION AND FUTURE WORK

This paper presents AdaFlow, an efficient in-network traf-
fic classifier for various security tasks using a programmable
switch. AdaFlow is designed to accurately classify traffic
with diverse flow characteristics while keeping the data plane
memory footprint low. The key idea is to incorporate traffic-
specific heuristics while training ML models and resolving
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Fig. 7: Switch overheads: We observe AdaFlow consumes less resources compared to NetBeacon while being at par with Jewel. For all 3 systems, we use
65, 536 hash table entries and 256, 512, 32, 370, 256, 256, and 256 ML model inference rules (deployed in match-action tables) for each of the seven tasks:
Covert channel [18], P2P botnet [20], DDoS [21], UNIBS [22], UNSW [23], ToN-IoT [24], and IoT23 [25].

flow-level collisions. Compared to the state-of-the-art work,
AdaFlow improves accuracy without consuming extra switch
resources. As a part of future work, we will evaluate and
minimize AdaFlow overheads in terms of control- and data
plane bandwidth.
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