
In-Network Probabilistic Monitoring Primitives under the
Influence of Adversarial Network Inputs

Harish S A∗

IIT Hyderabad
India

K Shiv Kumar†
IIT Hyderabad

India

Anibrata Majee
IIT Hyderabad

India

Amogh Bedarakota
IIT Hyderabad

India

Praveen Tammana
IIT Hyderabad

India

Pravein Govindan Kannan
IBM Research

India

Rinku Shah
IIIT Delhi
India

ABSTRACT
Network management tasks heavily rely on network telemetry
data. Programmable data planes provide novel ways to collect this
telemetry data efficiently using probabilistic data structures like
bloom filters and their variants. Despite the benefits of the data
structures (and associated data plane primitives), their exposure
increases the attack surface. That is, they are at risk of adversarial
network inputs.

In this work, we examine the effects of adversarial network
inputs to bloom filters that are integral to data plane primitives.
Bloom filters are probabilistic and inherently susceptible to pollu-
tion attacks which increase their false positive rates. To quantify
the impact, we demonstrate the feasibility of pollution attacks on
FlowRadar, a network monitoring and debugging system that em-
ploys a data plane primitive to collect traffic statistics. We observe
that the adversary can corrupt traffic statistics with a few well-
crafted malicious flows (tens of flows), leading to a 99% drop in the
accuracy of the core functionality of the FlowRadar system.

CCS CONCEPTS
• Networks→ In-network processing; Network monitoring;
Programmable networks; • Security and privacy→ Network se-
curity.

KEYWORDS
Network security, Programmable data planes, Probabilistic data
structures, Bloom filters, Adversarial influence

ACM Reference Format:
Harish S A, K Shiv Kumar, Anibrata Majee, Amogh Bedarakota, Praveen
Tammana, Pravein Govindan Kannan, and Rinku Shah. 2023. In-Network

∗Both the authors have contributed equally to the work
†Both the authors have contributed equally to the work

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
APNET 2023, June 29–30, 2023, Hong Kong, China
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0782-7/23/06. . . $15.00
https://doi.org/10.1145/3600061.3600086

Probabilistic Monitoring Primitives under the Influence of Adversarial Net-
work Inputs. In 7th Asia-Pacific Workshop on Networking (APNET 2023),
June 29–30, 2023, Hong Kong, China. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3600061.3600086

1 INTRODUCTION
The introduction of programmable data planes (i.e., switches, smart-
NICs, FPGAs) and a high-level language to program them (i.e.,
P4 [12]) has spurred in-network systems [5, 15, 20, 22, 23, 25, 27–
31, 33, 39, 40, 44–46] benefiting a range of management tasks and
eliciting interest from both the industry and academia. Network
management tasks such as monitoring [20, 29, 30, 40, 44], load bal-
ancing [27, 33], routing [7, 22, 23], security [15, 25, 28, 31, 39, 45, 46],
and caching [5] heavily rely on network telemetry data (e.g., packet
counts, delay) collected by data plane monitoring primitives.

However, the design of these data plane monitoring primitives
depends on memory and per-packet processing time constraints
imposed by network devices (i.e., network switches [6], smart-
NICs [26]). More specifically, to comply with the space constraints
and perform monitoring at line rates, compact hash-based proba-
bilistic data structures like bloom filters [11] and its variants (count-
min-sketches [18], invertible bloom lookup tables [21]) are em-
ployed.

Bloom filters are preferred for their space efficiency and low per-
packet computation cost. Essentially, it is a lightweight hash-based
probabilistic data structure that can determine the membership of
an element (i.e., traffic flows in the network context) to a set in
constant time. However, they are prone to false positives due to
hash collisions [19]. That is, a new flow could be falsely identified as
an existing flow. Generally, using multiple bloom filters indexed by
several hash functions is a common practice to keep false positive
rates low.

Regardless, an adversary (i.e., a malicious actor who intends to
cause harm to the system) can aim to increase the false positive
probability by polluting the bloom filter [19, 37]. The underlying
motive is to trick the bloom filter into incorrectly reporting the pres-
ence of non-existent elements, thereby corrupting the collected net-
work statistics. Different network applications can tolerate varied
thresholds of false positive rate (FPR) but the general premise holds
true: an increase in FPR leads to application misbehavior [13, 19].

https://orcid.org/0000-0001-6237-8058
https://orcid.org/0000-0001-9708-5562
https://orcid.org/0009-0008-5839-2234
https://orcid.org/0009-0008-1103-3138
https://orcid.org/0000-0002-8057-7699
https://orcid.org/0000-0001-7901-3581
https://orcid.org/0000-0001-9823-4515
https://doi.org/10.1145/3600061.3600086
https://doi.org/10.1145/3600061.3600086

APNET 2023, June 29–30, 2023, Hong Kong, China Harish S A and K Shiv Kumar, et al.

To the best of our knowledge, [24, 32] are the first works that
study recent data-driven networked systems under varied adver-
sarial network inputs. However, the precise impacts of targeted
pollution attacks on these systems’ bloom filter-based probabilis-
tic data structures are unclear. Enumerating the impact of such
targeted pollution attacks can be rewarding due to its potential
applicability across multiple systems that use the same data struc-
tures [5, 7, 14, 25, 29, 30, 33, 44, 45].

Essentially we probe the following question throughout the pa-
per: "What are the negative impacts of polluting probabilistic compact
data structures that drive data plane monitoring primitives employed
by the data-driven networked systems [5, 7, 14, 25, 29, 30, 33, 44, 45]?".
With different bloom filter variants employed in these systems,
they may be susceptible to pollution attacks. To study such attacks
further, we pick FlowRadar [29], a network monitoring system and
carefully study and demonstrate the impact of pollution attacks on
its bloom filter-based data structures.

Towards this goal, we first elaborate the threat model in §3.
The idea is to define the capabilities and influence of the attacker
that enable us to work with feasible attack vectors. Next, we briefly
explain the role of bloom filters in FlowRadar [29] and subsequently
extend the analysis through concrete attacks on its bloom filters.
That is, we place FlowRadar in adversarial settings, which generate
malicious flows to pollute its bloom filters and analyze its impact
on the accuracy of its operations.

The adversarial intent is to either increase the false positive
probability or corrupt existing entries in the bloom filters employed.
We demonstrate the feasibility of attacks under two adversarial
models: (1) Chosen Insertion Adversary (CIA) and (2) Query Only
Adversary (QOA) (more in §3). From our preliminary findings, we
see that even a few but carefully crafted adversarial flows corrupt
a large quantum of network statistics. Colloquially, the attacker
seems to get the bang for his buck, further emphasizing the need to
study such pollution attacks in depth.

We briefly discuss mitigatory strategies and best practices that
can detect and defend against such attacks. Further, the scope of
our work possibly extends to bloom filters internally employed by
network switches [3] and the Linux kernel eBPF code [4, 42]. This
work is expected to serve as a template for exploring adversarial
influence on other contemporary data plane monitoring primitives
that use bloom filter-based probabilistic data structures.

2 BLOOM FILTERS
In the context of networking applications, bloom filters are gen-
erally used to identify and keep track of traffic flows. Consider
a bloom filter of size 12 and two hash functions (i.e., 𝐻1 and 𝐻2)
as shown in Figure 1 which keeps track of traffic flows. A flow is
identified by its 5−tuple subset of its header fields (i.e., source IP,
destination IP, source port, destination port, and protocol). A hash
of the 5−tuple (also called a flowID) is generated and mapped to
one of the bloom filter indices which is set to ‘1’ indicating the
presence of the flow.

In Figure 1, flows 𝑓1, 𝑓2, and 𝑓3 have already been inserted into
the bloom filter as depicted by the corresponding arrows pointing
to ‘set’ indices (i.e., 1). Now, to check the membership of a flow
(also called a ‘query’) in the bloom filter, the indices are calculated

1 0 1 1 1 0 1 0 0 1 0 0

f1 f2 f3

H1(f1) H2(f1)H1(f3)

H2(f3)
H1(f2)

H2(f2)

H1(f4) H2(f4)

f4 f5

H1(f5) H2(f5)

False
Positive

Flow not
present

Insertion

Query

fQOA fCIA

Malicious Query Only Adversary flow Malicious Chosen

Insertion Adversary
flow

H1(fQOA)

H2(fQOA)

11

H1(fCIA)

H2(fCIA)

f6
Induced

False
Positive

Figure 1: Bloom filter of size 12 and 2 hash functions: under
normal and malicious action

by using the same two hash functions. In Figure 1, flow 𝑓4 is not
present in the bloom filter owing to hash 𝐻2 pointing to an unset
(i.e., 0) index. That is, only if all the calculated indices are set bits
(i.e., 1), the flow is considered to be a member. Consider the query
for flow 𝑓5 in Figure 1. Both the calculated hash indices point to ‘set’
cells (i.e., 1) but they were set by flows 𝑓1 and 𝑓3. That is, the flow 𝑓5
is not inserted in the bloom filter, but its membership query returns
𝑡𝑟𝑢𝑒 . Such a scenario is a false positive and is unavoidable in a bloom
filter due to hash collisions [19]. Also, other bloom filter variants
like count-min-sketches [18], invertible bloom lookup tables [21]
are susceptible to false positives. Generally, to keep a low false
positive rate, using multiple bloom filters indexed by several hash
functions is a common practice. The false positive probability 𝑓 is
a function of the expected number of items 𝑛, the size of the bloom
filter𝑚 and the number of hash functions 𝑘 given as:

𝑓 =

(
1 −

(
1 − 1

𝑚

)𝑘𝑛)𝑘
(1)

3 THREAT MODEL
Here, we explain who the adversary is, his privileges, his objectives
and the adversarial models under which he crafts malicious traffic.

3.1 Adversarial privileges
We assume that an adversary knows everything about the system
implementation (i.e., parameters and algorithm) except for cryp-
tographic secrets [36]. More specifically, the adversary is knowl-
edgeable of the following details: (1) the size of the bloom filter (2)
the number of hash functions, and (3) the type of hash function
being used. This is a fair assumption, considering most implemen-
tations are open-sourced and publicly available. However, even if
not, works like [41] infer the hash function details using collisions.
We consider two types of adversaries [19]: (1) Chosen Insertion
Adversary (CIA) and (2) Query Only Adversary (QOA).
Chosen Insertion Adversary (CIA). The objective of CIA is to
increase the number of ‘set’ bits in the bloom filter. In Figure 1, 𝑓𝐶𝐼𝐴
is a malicious flow crafted by a CIA. The intent is to maximize the
number of ‘set’ bits, and thus, all of the malicious flows he generates
map to different locations in the bloom filter. In the example, 𝑓𝐶𝐼𝐴
is responsible for 𝑓6 being judged as a false positive. That is, the
malicious flow has successfully induced a false positive. To do so,

In-Network Probabilistic Monitoring Primitives under the Influence of Adversarial Network Inputs APNET 2023, June 29–30, 2023, Hong Kong, China

the adversary requires knowledge of the size of the bloom filter
and the type and number of hash functions. The adversary could
be a malicious node by himself or compromise a benign node and
has permission to craft and send malicious traffic to the in-network
data plane primitive.
Query Only Adversary (QOA). The objective of QOA is to map to
bits that are already ‘set’ in the bloom filter. In this work, we deviate
slightly from the classical definition of QOA mentioned in [19].
In Figure 1, 𝑓𝑄𝑂𝐴 is a malicious flow crafted by a QOA which maps
to locations that are already ‘set’. Although it may seem counter-
intuitive, it is done with the idea of polluting statistics collected
behind the bloom filter. For instance, a heavy hitter detector would
increment counters when encountering an existing flow. Here, the
adversary requires knowledge of the size of the bloom filter, its
partial state, the hash type, and the number of hash functions. To
know the state of the bloom filter, the QOA may sniff traffic from a
compromised node over a period of time (i.e., Man-in-the-Middle).
Through this, he maintains a local image of the bloom filter and
crafts malicious flows that map to the ‘set’ bits.

Further nuances concerning malicious flow generation are dis-
cussed in §6.3.

4 BLOOM FILTERS IN FLOWRADAR
FlowRadar [29] is a network monitoring system that maintains
flows and their counters in a data center environment. To realize
this, FlowRadar encodes flow information using a data plane primi-
tive that utilizes compact probabilistic data structures (i.e., a bloom
filter and a modified inverted bloom lookup table) abstracted as
a flowset which leverage constant insertion and query time in a
programmable switch. A remote collector is then used to aggregate
flowsets from multiple switches every 10ms to perform network-
wide decoding to extract the flow counters.
Flowset. The flowset (Figure 2) is composed of two abstract data
structures: (1) flowfilter and (2) counting table. It uses non-cryptographic
hash functions to map incoming flows to both of them. First, the
flow filter is a vanilla bloom filter used to register ‘new flows’
and identify subsequent packets that belong to the registered flow.
In Figure 2, flow 𝑓 is hashed using two hash functions 𝐻1 and 𝐻2
to set the bits in the flow filter, thus registering it as a ‘new flow’.
However, if all the hashed bit locations are already set, then the flow
is considered as an ‘old flow’ which will be the case for subsequent
packets from the same flow.

0 0 0 0 0 0 0 0 0 0

flow filter

counting table

FlowXor -

FlowCount 0

PacketCount 0

H1(f) H2(f)

Hct1(f)

Flow

f

11

1

1

f

2 3

On arrival of

subsequent

packets

On arrival of the first

packet from the `new

flow’

Figure 2: FlowRadar data structure: flowset

The counting table is a modified invertible bloom lookup ta-
ble [21] used to capture and maintain further fine-grained informa-
tion about the flows. It is structured as an array of cells where each
cell contains three fields: FlowXor, FlowCount and PacketCount as
shown in Figure 2. FlowXor holds the flowIDs (i.e., XORed 5-tuple
values); FlowCount holds the number of flows mapped to the same
cell; and PacketCount holds the number of packets observed. Upon
the arrival of a ‘new flow’, all three fields of the counting table
cell (identified by 𝐻𝑐𝑡1) are updated as shown in Figure 2. FlowXor
XORs any previous flowIDs and the current flowID. The FlowCount
and PacketCount fields are incremented. Upon arrival of an ‘old
flow’ (i.e., subsequent packets from the flow), only the PacketCount
field is incremented.

FlowXor b c b ⊕ a a ⊕ c

FlowCount 1 1 2 2

PacketCount 10 10 20 20

FlowXor - c a a ⊕ c

FlowCount 0 1 1 2

PacketCount 0 11 11 20

(a) SingleDecode (SD)

FlowXor - - a a

FlowCount 0 0 1 1

PacketCount 0 0 11 9

c

(b) CounterDecode (CD)

a b c

0 1 0

0 0 1

1 1 0

1 0 1

Linear Equations

Pc = 11

Pa + Pb = 21

Pa + Pc = 20

Pb = 10

Decoded Flows and

Packet counts
Flow b Flow c Flow a

Decoded

count

Flow a = 9

Flow b = 10

Flow c = 10

Pure cells

Flow

b

a

CD Matrix

Pkt

10

11

21

20

s
iz

e
 o

f
c
o
u
n
ti
n
g
 t
a
b
le

Number of flows from SD

10 11 11

x

FlowXor b c b ⊕ a a ⊕ c

FlowCount 1 1 2 2

PacketCount 10 11 21 20

x

In
it

ia
l C

T

New colliding flow

Figure 3: FlowRadar operations

FlowRadar operation: SingleDecode (SD). SingleDecode takes
as input the counting table and outputs a subset of flowIDs that
can be used for the CounterDecode operation. Consider the initial
state of the counting table in Figure 3 with flows 𝑎, 𝑏 and 𝑐 having
actual packet counts 10, 10, and 10 respectively. Consider that a
subsequent flow 𝑥 collides (marked in red color) with two locations
that are already ‘set’. Thus, this flow is treated as ‘old’ and only the
PacketCount is incremented by ‘1’ (i.e., no update to FlowXor and
FlowCount).

The SingleDecode algorithm searches for specific entries in the
counting table called ‘pure cells’ as shown in Figure 3(a) This is
characterized by a FlowCount field with a value 1. Flows 𝑏 and
𝑐 have ‘pure cells’ associated with them as shown in Figure 3(a).
Upon detecting a ‘pure cell’, the algorithm subtracts its values from
the other locations the flow is mapped to. The subtraction opera-
tion causes a cascading effect such that more ‘pure cells’ emerge as
shown in Figure 3(a) and the flowIDs are decoded in this order: b→
c→ a. The obtained packet counts are discarded as they are inaccu-
rate and only the flowIDs are sent as input to the CounterDecode
process to minimize the packet count error.
FlowRadar operation: CounterDecode (CD). The CD takes as
input the set of SingleDecoded flowIDs and the PacketCount field

APNET 2023, June 29–30, 2023, Hong Kong, China Harish S A and K Shiv Kumar, et al.

values of all the counting table entries (i.e., 10, 11, 21, 20) and out-
puts their packet counts with a reduced error margin. It does so by
representing the flows as a CD matrix with dimensions (counting
table size × number of SingleDecoded flows) as shown in Figure 3(b).
Each column represents the cells of the counting table to which the
flow is mapped to. For example, Flow 𝑎 is mapped to the third and
fourth cell and thus has 1 in the corresponding entries. Using the
packet counts of the counting table, the matrix is represented as
multivariable linear equations which are solved using approxima-
tion methods (e.g., method of least squares [34]). The solution in
this case reduces the packet count error (i.e., from 2 wrong values
to 1).

5 QUALITATIVE ANALYSIS
We explore the various scenarios that arise based on the order of
malicious and benign flow arrival. In line with the same, we present
two scenarios: (1) Malicious flow arrives before benign, and (2)
Malicious flow arrives after benign. Each of these scenarios has 4
cases associated with them based on the locations the flows map to
in the flowset’s filters:
Case I. The malicious flow completely collides with only a single
benign flow. that is, all their indices coincide.
Case II. The malicious flow partially collides with a single benign
flow. Only some indices of the malicious flow coincide with a benign
flow. The rest or at least one of its indices maps to an ‘unset’ location.
Case III. The malicious flow completely collides with multiple be-
nign flows. All malicious flow indices coincide with distinct indices
that belong to many benign flows. None of them map to ‘unset’
locations.
Case IV. The malicious flow partially collides with multiple benign
flows. Only some indices of themalicious flow coincide with distinct
indices that belong to many benign flows. The rest or at least one
of its indices maps to an ‘unset’ location.

As per scenario 1, a malicious flow arriving first tends to occupy
either some or all of the ‘pure cells’ that would have otherwise
been occupied by the benign flow. On the contrary, in scenario 2,
when a malicious flow arrives after a benign flow, only the statistics
behind the already ‘set’ locations are affected. All cases in scenario
1 and cases II, IV of scenario 2 always register the malicious flow
as a ‘new’ flow which affects all three fields of a counting table cell
thus affecting both the SingleDecode and CounterDecode operation
which could cause a harmful effect by rendering the benign flow
undecodeable. On the contrary, a malicious flow registering as an
‘old’ flow (cases I and III of scenario 2) only affects the packet count
field of existing benign flows affecting only the CounterDecode
operation, which is less severe. Figure 4 summarizes the effects of
all the cases across both the scenarios and specify which FlowRadar
operation they affect.

6 EXPERIMENTS
The key question we investigate through the experiments is: What
is the impact on FlowRadar’s ability to decode flow information under
adversarial settings?

Case

Malicious flow mapping in flow

filter

Malicious flow treated

as

FlowRadar operations

affected

Single

benign flow

Multiple

benign

flows

Unoccupied

location New flow Old flow SingleDecode CounterDecode

I

II

III

IV

I

II

III

IV

Scenario 1: Malicious flow
before benign

Legend Scenario 2: Malicious flow
after benign

Figure 4: Malicious flow action

6.1 Experimental setup
We develop the core of FlowRadar logic using python. We do so in
order to observe its packet processing behavior and access its bloom
filters with ease at runtime. Pybloom, a python library [2] has been
used to implement the 𝑓 𝑙𝑜𝑤𝑠𝑒𝑡 (i.e., both the flowfilter and counting
table). We model the 𝑓 𝑙𝑜𝑤𝑠𝑒𝑡 parameters based on standard guide-
lines [21]. That is, given an expected number of incident flows (24k
in our case), the size of the flow filter and counting table has been
set to 0.24 and 0.03 million cells respectively, based on combined
suggestions from [19, 21, 29]. We use non-cryptographic murmur
hash functions [8]. Further, we assign 7 and 4 hash functions for
the flow filter and counting table respectively. To simulate data cen-
ter traffic, we perform our experiments only using the Wisconsin
datacenter dataset [1], primarily because FlowRadar is targeted at
data center environments. Ideally, FlowRadar exports its statistics
(i.e., clears flowset) every 10ms. We conduct our experiments to
influence the bloom filter within this time frame.

6.2 Metrics
To measure FlowRadar’s decode accuracy loss under malicious
influence, we first define three classifications based on the flowIDs
and per-flow packet counts obtained after the decoding process:
(1) Correctly decoded flows (2) Incorrectly decoded flows, and (3)
Undecodable flows. A correctly decoded flow’s packet count is equal
to its actual packet count. An incorrectly decoded flow’s packet
count is not equal to the actual packet count. Further, if the reported
count is off even by a single packet, we classify it as an incorrectly
decoded flow (i.e., no threshold). However, undecodable flows are
those flows whose flowIDs are not decoded via the SingleDecode
process and thus their packet counts are unobtainable. Note that
the sum of all three flow classifications equals the total number of
benign flows (i.e., 24k flows).

It is to be noted that even under completely benign circumstances
(i.e., no malicious flows), both the SingleDecode and CounterDe-
code exhibit loss of flowIDs and per-flow packet counts, respec-
tively. Thereby, both incorrectly decoded and undecodable flows
are observed. We define the ground truth as: "The number of flows
reported as correctly decoded, incorrectly decoded, and undecodable by
the FlowRadar’s SingleDecode and CounterDecode operations under
benign conditions".

6.3 Crafting malicious flows
In order to craft malicious flows, the adversary is assumed to have
knowledge of the bloomfilter implementation.More specifically, the

In-Network Probabilistic Monitoring Primitives under the Influence of Adversarial Network Inputs APNET 2023, June 29–30, 2023, Hong Kong, China

0.03 0.05 0.1 0.3 0.5 1 3 5 7 10
0

20

4040

60

80

100

Malicious flows (%)

A
ffe

ct
ed

be
ni
gn

flo
w
s(
%)

Correctly decoded flows(%)
Incorrectly decoded flows (%)

Undecodable flows (%)

(a) Chosen Insertion Adversary

0.03 0.05 0.1 0.3 0.5 1 3 5 7 10
0

20

4040

60

80

100

Malicious flows (%)

A
ffe

ct
ed

be
ni
gn

flo
w
s(
%)

Correctly decoded flows(%)
Incorrectly decoded flows (%)

Undecodable flows (%)

(b) Query Only Adversary

0.03 0.05 0.1 0.3 0.5 1 3 5 7 10
0

20

4040

60

80

100

Malicious flows (%)

A
ffe

ct
ed

be
ni
gn

flo
w
s(
%)

Correctly decoded flows(%)
Incorrectly decoded flows (%)

Undecodable flows (%)

(c) Subset flows

Figure 5: Impact of adversarial flows

size of the bloom filter, the type and number of hash functions used
are known by the adversary in order to craft the flows intelligently.
Moreover, the methodology for crafting malicious flows differ for
each variant of the adversary (as per §3). The craftedmalicious flows
are inserted at temporally random times, interlacing them with the
benign flows of the dataset. Multiple runs of the experiments are
performed by gradually increasing the percentage of malicious
flows at each run to determine the adverse effects.
Chosen Insertion Adversary. The CIA generates random flowIDs
(i.e., 5-tuples) for the malicious flows such that they do not collide
amongst themselves in the flowset’s flow filter. By extension, each
crafted flow map to new locations in the filter, thus affecting ‘pure
cells’ and increasing the false positive rate. Also, there exists possi-
bilities where the crafted flows can collide with benign flows as the
crafting strategy does not factor in the cells occupied by benign
flows. Such flows are expected to cause maximum havoc since they
potentially affect all the fields of the counting table.
Query Only Adversary. The QOA generates random flowIDs (i.e.,
5-tuples) such that the malicious flows only map on to already set
locations in the flow filter. Such flows are expected to corrupt the
packet count statistics of multiple benign flows in the counting
table with a higher probability. However, due to the order of flow
arrival, it can also occupy new cells and affect ‘pure cells’, exhibiting
effects similar to CIA.
In addition to the above strategies, We also generate malicious flows
whose flowIDs are identical to the benign flows. Both CIA and QOA
are capable of generating these flows which we call ‘Subset’. It is
to be noted that we employ brute force search techniques to craft
malicious flows in all the cases.

6.4 Results and Discussion
We present our empirical analysis on the impact of both adver-
sarial models (CIA & QOA) on FlowRadar in Figure 5. The x-axis
denotes the percentage of malicious flows that were introduced
with respect to the total number of benign flows (i.e., 24k). We vary
the malicious flow percentage till 10% (2472 malicious flows) in
all our experiments. Please note that the malicious flows do not
replace any existing benign flows but rather are additional. The
y-axis denotes the percentage of affected benign flows.
Observations. The adverse effect on the decoding accuracy due
to malicious flows crafted by CIA is shown in Figure 5 (a). Figure 5
(b) denotes the effect of QOA on decoding accuracy. For both these
strategies, all the 8 cases (i.e., 4 cases each under two scenarios
in Figure 4) are applicable and thus exhibit similar plots. On the

outset, we see that 0.3% malicious flows disrupt almost 99% of
benign flows. More specifically, at 10% malicious flows, we see that
almost 80% of benign flows are rendered undecodable, making the
attack effective. Among both, CIA entails the least effort and thus,
we claim it as the most effective strategy for the adversary.

Not surprisingly, for the trivial subset case (Figure 5 (c)), the
effects are subdued. As per Figure 4, only case I of the two scenarios
applies. However, since its flow IDs are the same as that of benign
flows, we can only observe an increase in packet count (i.e., affects
CounterDecode). In line with that, we see only a gradual rise in
incorrectly decoded flows. This clearly indicates that polluting just
the packet counts is not sufficient for the adversary to get a bang
for his buck.
Q1. What explains the sharp cliff and rise, at the 0.3% mali-
cious flow mark in Figure 5(a),(b)?
The nature of bloom filters is such that the false positive rate does
not show an exponential increase before a particular threshold. As
explained in [19], the birthday-paradox renders the initial flows to
most likely occupy different cells. Beyond a particular threshold,
collisions begin to occur, whose effects we observe as a sharp cliff
and rise at 0.3% malicious flows. Moreover, due to its probabilistic
nature, the interdependencies between flows caused by collisions cre-
ate a cascading effect. For instance, the SingleDecode operation is
affected due to the overlapping of malicious flows with benign flows
increasing the number of undecodable flows. Also, CounterDecode
is heavily dependent on approximations to solve a large number of
multi-variable linear equations. Thus, a few malicious flows that
affect a few linear equations potentially cascade to a large number
of benign flows observed as incorrectly decoded flows. We leave the
theoretical analysis and enumeration of the relationship between
the threshold and the bloom filter configuration to future works.
Q2. Howmuch does the temporal ordering ofmalicious flows
with respect to benign flows matter?
To find an answer, we performed experiments where the malicious
flows were sent at the conclusion of all benign flows for QOA, affect-
ing only packet counts. As expected, the number of undecodable
flows remains constant and is equal to the ground truth in spite of
the increase in malicious flows. However, we do observe a sharp
rise in incorrectly decoded flows (due to cascading effect). Also,
in practical scenarios, malicious flows are always interlaced with
benign flows as the system is continuously operational in real-time.
Summary. From the experiments, we see that it is sufficient for the
adversary to put in less effort to corrupt the FlowRadar statistics.
Crafting malicious flows intelligently enough (i.e., like CIA and
QOA) can substantially compromise FlowRadar. This is a cause for

APNET 2023, June 29–30, 2023, Hong Kong, China Harish S A and K Shiv Kumar, et al.

concern and highlights the glaringly vulnerable state of data plane
primitives that use compact probabilistic data structures. We would
like to briefly point out that another recent system RouteScout [7]
uses a similar ‘pure cell’ based approach to calculate delay and
packet loss completely in the data plane. Our analysis methodology
appears to be well-extendable to that system.

7 MITIGATORY MEASURES
We brief some detection and defense measures. We leave their
concrete analysis and implementation to future work.
Best practices for system design. A bloom filter that is directly
exposed to raw traffic is at a high risk of adversarial manipulation.
However, a well-placed bloom filter as seen in [25] ensures that
security policies are applied on raw traffic before reaching the
bloom filter, thus making it hard for adversaries. That is, there are
layers of other deterministic processing that the traffic has to pass
through. The adversarial window for attack reduces substantially.
With that being said, the system design is use-case dependent, and
therefore in some cases, it is unavoidable to place a bloom filter
that is easily accessible to adversarial input.
Observe traffic response.One can argue that adversarially crafted
malicious flows may not solicit a response from the target server. If
there are no reply messages, then the flow is potentially malicious.
Amonitoring system in place to weed out the offending traffic could
do well to stop such attacks. However, the question remains open
as to where the monitoring system can be placed. One idea is to
place a monitoring mechanism at the data plane primitive itself, but
it increases the data plane overhead and could itself be vulnerable.
Further compounding the difficulty is line rate observation of traffic,
which can be challenging.
Model benign bloom filter growth.One idea is to train models to
capture expected behavior that is the benign rate of growth of ‘set’
bits in the bloom filter. Any deviation from the expected behavior
could be flagged as potentially malicious. However, constant moni-
toring of a data plane primitive is challenging in itself. A remote
collector would periodically gather data, analyze and send signals
for action back to the data plane.
Ranking the flows. The malicious flows could be subject to rank-
ing metrics following ideas from works like SurgeProtector [9].
That is, based on some metric (e.g., job size to packet size ratio), the
incoming flows could be ranked. Even though this works best for
temporal algorithmic complexity attacks, it is a matter of finding
the right metric to rank the offending traffic and drop the packets
from the least ranked ones to defend against spatial algorithmic
complexity attacks like bloom filter pollution.

8 RELATEDWORK
Bloomfilters in adversarial setting. The works [16, 17, 19, 35, 37,
38] comprehensively analyze the impact of false positives caused
by malicious inputs on bloom filters. They provide provable secu-
rity treatment of bloom filter variants and focus on securing them
cryptographically. Our work follows [19] to empirically analyze
the impact of adversarial network inputs on the underlying data
plane primitives that employ bloom filter variants.

Adversarial analysis of data-driven network systems. The
works [10, 24, 32, 43] explore adversarial exploitation of data-driven
data plane-based network systems. Our work complements their
efforts and extends [32] to analyze data plane primitives that use
bloom filter variants.

9 CONCLUSION AND FUTUREWORK
Bloom filter-based data plane primitives are integral to network
monitoring and management systems. However, such systems are
susceptible to adversarial network inputs. In this paper, we study the
impact and the feasibility of two types of attacks, chosen insertion
adversary and query-only adversary, on a network monitoring and
debugging system called FlowRadar. We observe that an adversary
can corrupt the traffic statistics collected by FlowRadar by generat-
ing a few crafted malicious flows (tens of flows), which would lead
up to a 99% drop in accuracy. We analyze various malicious traffic
generation scenarios and identify the most effective strategy for
the adversary. In our future work, we plan to extend our analysis to
other systems using similar data plane primitives (e.g., RouteScout,
NetCache) and develop detection and defense mechanisms that aim
to protect a wide range of data plane primitives.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their thoughtful feedback.
We also thank Ranjitha for giving valuable feedback on the earlier
drafts. This work is supported by National Security Council Secre-
tariat (NSCS), India, and the Prime Minister’s Research Fellowship
(PMRF) program, India.

REFERENCES
[1] 2010. Data Set for IMC 2010 Data Center Measurement. Retrieved March 2023

from https://pages.cs.wisc.edu/~tbenson/IMC10_Data.html
[2] 2014. pybloom 1.1. Retrieved October 2022 from https://github.com/jaybaird/

python-bloomfilter/
[3] 2017. Service discovery optimization in a network based on bloom filter. Retrieved

March 2022 from https://patents.google.com/patent/US20170034285A1/en
[4] 2023. kernel: missing initialization in bloom filter map in kernel bpf. Retrieved

March 2023 from https://bugzilla.redhat.com/show_bug.cgi?id=2048259
[5] Xin Jin 0008, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate

Foster, Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing Key-Value
Stores with Fast In-Network Caching. In ACM SOSP.

[6] Anurag Agrawal and Changhoon Kim. 2020. Intel tofino2 – A 12.9 tbps p4-
programmable ethernet switch. In IEEE HCS.

[7] Maria Apostolaki, Ankit Singla, and Laurent Vanbever. 2021. Performance-driven
internet path selection. In Proceedings of the ACM SIGCOMM Symposium on SDN
Research (SOSR). 41–53.

[8] Austin Appleby. 2008. Murmurhash. URL https://sites. google.
com/site/murmurhash (2008).

[9] Nirav Atre, Hugo Sadok, Erica Chiang, Weina Wang, and Justine Sherry. 2022.
SurgeProtector: Mitigating temporal algorithmic complexity attacks using adver-
sarial scheduling. In Proceedings of the ACM SIGCOMM 2022 Conference. 723–738.

[10] Conor Black and Sandra Scott-Hayward. 2021. Adversarial Exploitation of P4
Data Planes. In 2021 IFIP/IEEE International Symposium on Integrated Network
Management (IM). IEEE, 508–514.

[11] Burton H Bloom. 1970. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM 13, 7 (1970), 422–426.

[12] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al.
2014. P4: Programming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review 44, 3 (2014), 87–95.

[13] Andrei Broder and Michael Mitzenmacher. 2004. Network applications of bloom
filters: A survey. Internet mathematics 1, 4 (2004), 485–509.

[14] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, Ori Rottenstre-
ich, Steven AMonetti, and Tzuu-YiWang. 2019. Fine-grained queue measurement
in the data plane. In Proceedings of the 15th International Conference on Emerging
Networking Experiments And Technologies. 15–29.

https://pages.cs.wisc.edu/~tbenson/IMC10_Data.html
https://github.com/jaybaird/python-bloomfilter/
https://github.com/jaybaird/python-bloomfilter/
https://patents.google.com/patent/US20170034285A1/en
https://bugzilla.redhat.com/show_bug.cgi?id=2048259

In-Network Probabilistic Monitoring Primitives under the Influence of Adversarial Network Inputs APNET 2023, June 29–30, 2023, Hong Kong, China

[15] Xiaoqi Chen, Hyojoon Kim, Javed M Aman, Willie Chang, Mack Lee, and Jennifer
Rexford. 2020. Measuring TCP round-trip time in the data plane. In Proceedings
of the Workshop on Secure Programmable Network Infrastructure. 35–41.

[16] Ken Christensen, Allen Roginsky, and Miguel Jimeno. 2010. A new analysis of the
false positive rate of a bloom filter. Inform. Process. Lett. 110, 21 (2010), 944–949.

[17] David Clayton, Christopher Patton, and Thomas Shrimpton. 2019. Probabilistic
data structures in adversarial environments. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security. 1317–1334.

[18] Graham Cormode and Shan Muthukrishnan. 2005. An improved data stream
summary: the count-min sketch and its applications. Journal of Algorithms 55, 1
(2005), 58–75.

[19] Thomas Gerbet, Amrit Kumar, and Cédric Lauradoux. 2014. The Power of Evil
Choices in Bloom Filters. In IEEE IFIP.

[20] Mojgan Ghasemi, Theophilus Benson, and Jennifer Rexford. 2017. Dapper: Data
plane performance diagnosis of tcp. In Proceedings of the Symposium on SDN
Research. 61–74.

[21] Michael T Goodrich and Michael Mitzenmacher. 2011. Invertible bloom lookup
tables. In 2011 49th Annual Allerton Conference on Communication, Control, and
Computing (Allerton). IEEE, 792–799.

[22] Thomas Holterbach, Edgar Costa Molero, Maria Apostolaki, Alberto Dainotti,
Stefano Vissicchio, and Laurent Vanbever. 2019. Blink: Fast connectivity recovery
entirely in the data plane. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19). 161–176.

[23] Kuo-Feng Hsu, Ryan Beckett, Ang Chen, Jennifer Rexford, and David Walker.
2020. Contra: A programmable system for performance-aware routing. In 17th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 20).
701–721.

[24] Qiao Kang, Jiarong Xing, and Ang Chen. 2019. Automated Attack Discovery in
Data Plane Systems.. In CSET@ USENIX Security Symposium.

[25] Qiao Kang, Lei Xue, Adam Morrison, Yuxin Tang, Ang Chen, and Xiapu Luo.
2020. Programmable in-network security for context-aware BYOD policies. In
USENIX Security.

[26] Georgios P Katsikas, Tom Barbette, Marco Chiesa, Dejan Kostić, and Gerald Q
Maguire. 2021. What you need to know about (smart) network interface cards. In
Passive and Active Measurement: 22nd International Conference, PAM 2021, Virtual
Event, March 29–April 1, 2021, Proceedings 22. Springer, 319–336.

[27] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer
Rexford. 2016. Hula: Scalable load balancing using programmable data planes. In
Proceedings of the Symposium on SDN Research. 1–12.

[28] Guanyu Li, Menghao Zhang, Chang Liu, Xiao Kong, Ang Chen, Guofei Gu, and
Haixin Duan. 2019. Nethcf: Enabling line-rate and adaptive spoofed ip traffic
filtering. In 2019 IEEE 27th international conference on network protocols (ICNP).
IEEE, 1–12.

[29] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016. {FlowRadar}: A
Better {NetFlow} for Data Centers. In 13th USENIX symposium on networked
systems design and implementation (NSDI 16). 311–324.

[30] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016. Lossradar: Fast
detection of lost packets in data center networks. In Proceedings of the 12th
International on Conference on emerging Networking EXperiments and Technologies.
481–495.

[31] Zaoxing Liu, Hun Namkung, Georgios Nikolaidis, Jeongkeun Lee, Changhoon
Kim, Xin Jin, Vladimir Braverman, Minlan Yu, and Vyas Sekar. 2021. Jaqen:
A High-Performance Switch-Native Approach for Detecting and Mitigating
Volumetric DDoS Attacks with Programmable Switches.. In USENIX Security
Symposium. 3829–3846.

[32] Roland Meier, Thomas Holterbach, Stephan Keck, Matthias Stähli, Vincent
Lenders, Ankit Singla, and Laurent Vanbever. 2019. (self) driving under the
influence: Intoxicating adversarial network inputs. In Proceedings of the 18th
ACM Workshop on Hot Topics in Networks. 34–42.

[33] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017.
Silkroad: Making stateful layer-4 load balancing fast and cheap using switching
asics. In Proceedings of the Conference of the ACM Special Interest Group on Data
Communication. 15–28.

[34] Steven J Miller. 2006. The method of least squares. Mathematics Department
Brown University 8 (2006), 1–7.

[35] Moni Naor and Yogev Eylon. 2019. Bloom filters in adversarial environments.
ACM Transactions on Algorithms (TALG) 15, 3 (2019), 1–30.

[36] Fabien AP Petitcolas. 2011. Kerckhoffs’ Principle.
[37] Pedro Reviriego and Ori Rottenstreich. 2020. Pollution attacks on counting Bloom

filters for black box adversaries. In 2020 16th International Conference on Network
and Service Management (CNSM). IEEE, 1–7.

[38] Pedro Reviriego, Ori Rottenstreich, Shanshan Liu, and Fabrizio Lombardi. 2021.
Analyzing and Assessing Pollution Attacks on Bloom Filters: Some Filters are
More Vulnerable than Others. In 2021 17th International Conference on Network
and Service Management (CNSM). IEEE, 491–499.

[39] Dominik Scholz, Sebastian Gallenmüller, Henning Stubbe, Bassam Jaber, Minoo
Rouhi, and Georg Carle. 2020. Me love (SYN-) cookies: SYN flood mitigation in
programmable data planes. arXiv preprint arXiv:2003.03221 (2020).

[40] Satadal Sengupta, Hyojoon Kim, and Jennifer Rexford. 2022. Continuous in-
network round-trip time monitoring. In Proceedings of the ACM SIGCOMM 2022
Conference. 473–485.

[41] R Joshua Tobin and David Malone. 2012. Hash pile ups: Using collisions to
identify unknown hash functions. In 2012 7th International Conference on Risks
and Security of Internet and Systems (CRiSIS). IEEE, 1–6.

[42] Marcos AM Vieira, Matheus S Castanho, Racyus DG Pacífico, Elerson RS Santos,
Eduardo PM Câmara Júnior, and Luiz FM Vieira. 2020. Fast packet processing
with ebpf and xdp: Concepts, code, challenges, and applications. ACM Computing
Surveys (CSUR) 53, 1 (2020), 1–36.

[43] Liang Wang, Prateek Mittal, and Jennifer Rexford. 2022. Data-plane security
applications in adversarial settings. ACM SIGCOMM Computer Communication
Review 52, 2 (2022), 2–9.

[44] Weitao Wang, Praveen Tammana, Ang Chen, and TS Eugene Ng. 2020. Grasp
the root causes in the data plane: Diagnosing latency problems with SpiderMon.
In Proceedings of the Symposium on SDN Research. 55–61.

[45] Jiarong Xing, Qiao Kang, and Ang Chen. 2020. Netwarden: Mitigating network
covert channels while preserving performance. In USENIX Security.

[46] Eder Ollora Zaballa, David Franco, Zifan Zhou, and Michael S Berger. 2020.
P4Knocking: Offloading host-based firewall functionalities to the network. In
2020 23rd Conference on Innovation in Clouds, Internet and Networks andWorkshops
(ICIN). IEEE, 7–12.

	Abstract
	1 Introduction
	2 Bloom filters
	3 Threat Model
	3.1 Adversarial privileges

	4 Bloom filters in Flowradar
	5 Qualitative analysis
	6 Experiments
	6.1 Experimental setup
	6.2 Metrics
	6.3 Crafting malicious flows
	6.4 Results and Discussion

	7 Mitigatory Measures
	8 Related work
	9 Conclusion and future work
	Acknowledgments
	References

