
DBVal: Validating P4 Data Plane Runtime Behavior
K Shiv Kumar

IIT Hyderabad, India
Ranjitha K

IIT Hyderabad, India
P S Prashanth

IIT Hyderabad, India

Mina Tahmasbi Arashloo
Cornell University, USA

Venkanna U.
IIIT-NR, India

Praveen Tammana
IIT Hyderabad, India

ABSTRACT
The P4 software ecosystem to operate programmable data planes
is increasingly becoming complex. The packet-processing behavior
is defined by several components: the P4 program, the compiler
that maps P4 programs to resource-constrained switch pipeline, the
control-plane program that installs rules, and the switch software
agents that configure the data plane. Bugs in any one or more of
these components would potentially introduce packet-processing
errors in the data plane. Prior work verifies P4 programs before
deployment and found many program bugs. But bugs can happen
in other components after the program deployment and may not be
found during testing and only manifest themselves in production.

In this work, our goal is to detect packet-processing errors induced
by bugs that are not caught (or are difficult to catch) before the
P4 program deployment. Our key idea is to let P4 programmers
specify the intended packet-processing behavior and validate the
actual packet-processing behavior against the intended behavior at
runtime. We obtain intended behavior from the P4 programmers in
the form of assertions, where each assertion specifies which tables
and actions should be applied and in what order on a certain subset
of traffic. Next, the assertions are compiled and translated to P4
implementation such that the implementation efficiently tracks the
packet execution path, that is, the set of tables applied and actions
executed, and then validates the tracked behavior at line rate. We
show that our techniques can be used to effectively detect bugs that
are difficult, if not impossible, to catch with existing techniques for
testing and verifying programmable data planes.

CCS CONCEPTS
• Networks → In-network processing; Programmable networks;
Middle boxes / network appliances.

KEYWORDS
Software-Defined Networks, Programmable Data Planes, Runtime
Validation, Bug Detection

ACM Reference Format:
K Shiv Kumar, Ranjitha K, P S Prashanth, Mina Tahmasbi Arashloo, Venkanna
U., and Praveen Tammana. 2021. DBVal: Validating P4 Data Plane Runtime
Behavior. In The ACM SIGCOMM Symposium on SDN Research (SOSR)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SOSR ’21, September 20–21, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9084-2/21/09. . . $15.00
https://doi.org/10.1145/3482898.3483352

3Match + Action pipeline stagesParser Deparser

Packets

input.p4 Control plane
installing rules

Compiler Run-time systemPlatform layer

Program layer

Intent

Figure 1: P4 stack

(SOSR ’21), September 20–21, 2021, Virtual Event, USA. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3482898.3483352

1 INTRODUCTION
Programmable data planes allow programmers to define packet pro-
cessing and develop new network functions as well as re-configure
the existing functions. The functions range from traditional IP-prefix
based routing to load balancing [31, 36, 42] to DDoS detection [27].
Moreover, recent works [7, 22, 37] show the performance bene-
fits of offloading network functions from general-purpose servers
to programmable data planes (e.g., smartNICs [3], Intel Barefoot
Tofino [17]).

To reap the benefits of programmable data planes in practice, we
need to address a new set of challenges in ensuring the correctness of
the underlying software and hardware ecosystem, as shown in Fig. 1.
More specifically, the actual behavior of a P4 program in the data
plane may mismatch with the intended behavior because of the
following reasons: (1) Bugs in P4 program [29, 39, 50]; (2) Faulty
match-action rules installed by the controller [26, 28]; (3) State
in the data plane registers could be manipulated by adversaries
by injecting crafted input packets [33, 41]; (4) Compiler bugs and
switch software bugs [4, 20, 35, 46]; and (5) Hard to detect platform-
dependent hardware failures [47, 48].

In brief, packet-processing errors affect how packets are processed
in the data plane, which can result in violation of policies related to
availability, performance, and security. This motivates the need for
an ability to ensure that every packet in the switch data plane follows
its intended program path, that is, the set of tables to be applied and
the actions to be executed. In this paper, the key question we like to
investigate is: How can we validate the packet-processing behavior
of the P4 data plane at runtime?

https://orcid.org/0000-0002-8057-7699
https://doi.org/10.1145/3482898.3483352
https://doi.org/10.1145/3482898.3483352

SOSR ’21, September 20–21, 2021, Virtual Event, USA K Shiv Kumar, Ranjitha K, P S Prashanth, Mina Tahmasbi Arashloo, Venkanna U., and Praveen Tammana

...while network control planes are inherently compli-
cated, a P4 data plane captures ground truth for the
network—i.e., how it forwards packets—and is there-
fore an attractive platform for deploying verification
technologies. By observing and then validating behav-
ior at the data plane level, it is possible to reduce the
trusted computing base: the switch operating system,
driver, and other low-level components do not need to
be trusted...

– Larry Peterson et al [45]

Existing works on P4 verification [28, 39, 43, 50] mostly focus on
statically verifying various properties of the P4 program. They oper-
ate at the level of the P4 program, thus verify whether the software
logic is bug-free for a specific set of bugs. However, they cannot
be used to detect incorrect data-plane behavior due to issues at the
platform layer or in the P4 pipeline, such as (a) incorrect hardware
mapping for a P4 program by a compiler during compilation, es-
pecially non open-source compilers; (b) bugs in switch software;
and (c) bugs in non-programmable blocks [48] of a P4 pipeline (e.g.,
packet replication engine, buffer queuing engine).

On the other hand, automatic test packet generation approaches [44,
49] send test packets and verify the runtime behavior of a P4 program
with intended behavior. This enables detecting incorrect behavior
due to bugs at the platform layer or in the P4 pipeline. However,
given the size of real-world P4 programs and the complex software
and hardware ecosystem around them, test packets may not exer-
cise all possible packet-processing scenarios. There are several bugs
which in most scenarios happen in corner cases, manifesting them-
selves only after certain sequences of incoming packets with certain
combinations of rules in the tables. Therefore testing prior to deploy-
ment approach may not uncover such hard-to-catch bugs that trigger
at runtime.

In this work, we propose Dataplane Behavior Validator (DBVal)
system that validates the actual packet-processing behavior against
the intended behavior at runtime. Our approach is to let the P4
programmer tells us what is correct (expected) and use it as a ref-
erence to validate what we observed in the data plane in real time.
In contrast to using test packets, we consider every packet that goes
through the switch as a potential test packet for the data plane and
validate the observed behavior. Validating the observed behavior of
real packets is complementary to both the static analysis approach
and the test packet generation approach; it uncovers bugs that are
hard or not possible to detect by these approaches.

Designing such a system is challenging. First, doing per-packet
validation at high-speed line rates (order of Tbps) is not trivial. The
checks should be fast, accurate, and consume minimal data-plane
resources. For example, if the validation module is placed in the
switch control plane, at high line rates, the interface connecting
the data plane and the control plane will become a bottleneck, thus
making it infeasible to forward every packet metadata to the control
plane. Instead, it is a good design choice to place the validation
module in the data plane with intended behavior accessible at line
rate. To do so, we design a high-level assertion language using
which a P4 programmer writes assertions to define the intended
behavior of incoming traffic, and the DBVal compiler automatically

converts these assertions to P4 implementations that run at line rate.
More specifically, each assertion specifies the tables to be applied
and the actions to be executed on a certain traffic class, and the
compiler automatically annotates the original P4 program such that
the final annotated P4 program tracks and validates the actual packet-
processing behavior at runtime (more details in Section §4.2).

Second, it is crucial to carefully design a primitive that tracks
actual packet-processing behavior (i.e., the sequence of tables hit
and the actions applied) of every packet in a resource-constrained
data plane. In our prior preliminary work [38], we developed a path
tracker primitive that tracks the packet execution path in the data
plane. The key idea is that Ball-Larus encoding technique, a well-
known technique for profiling execution paths in software [23], is
a promising fit for tracking packet execution paths in P4 programs.
Since the encoding requires simple addition operations, it can be
implemented on programmable switches [17]. In this paper, we build
atop this primitive and integrate the primitive in the compilation
process so that the DBVal automatically checks whether tracked
execution path is one among the intended execution paths specified
in assertions (more details in Section §4.1).

The key contributions of the paper are as follows:

• Through example scenarios, we identify the need for validat-
ing data plane runtime behavior (§2).

• We present DBVal, a system for validating the actual packet-
processing behavior with the intended behavior expressed
by the P4 programmers. To realize DBVal, we propose a
language syntax using which P4 programmers can write as-
sertions and express intended packet-processing behavior
(§3). DBVal compiler automatically translates the assertions
to corresponding P4 implementations (§4).

• We prototype DBVal for two targets: BMV2 software
switch [16] and Intel Barefoot Tofino software switch
model [17] (§5). The code is available at [18]. We evalu-
ated the DBVal prototype in terms of expressiveness and
data-plane resource overhead by compiling assertions written
for a variety of P4 programs (§6).

2 MOTIVATING EXAMPLES
A P4 program and the rules installed in its tables determine how
each packet should be processed by the switch. More specifically,
they determine the path in the program’s control flow the packet
should take, including the tables it should hit, the rules in each
table it should match, and the actions that should be executed on it.
However, it is possible for a packet to take a different path than what
it is supposed to: hit different tables, get matched by the wrong rules,
or get processed incorrectly by actions. This can happen because of
(i) bugs in the compiler that result in parts of the program getting
translated incorrectly to hardware, (ii) bugs in switch software, or
(iii) bugs in the hardware target itself. All the above are hidden from
the programmer at the P4 program level and are hard to identify and
resolve in an offline manner before deployment.

In this section, we present few examples to motivate the need for
validation of data plane behavior. More specifically, we consider
three types of bugs that cause a mismatch between the intended
behavior and the actual behavior. First, we consider compiler bugs
that causes incorrect mapping of a p4 program on a programmable

DBVal: Validating P4 Data Plane Runtime Behavior SOSR ’21, September 20–21, 2021, Virtual Event, USA

hdr.tcp.isValid()

T_stateful_filter

A_update_known_flows A_check_known_flows

T_ACL

A_deny

T_NAT

A_rewrite A_no_action

Stateful
filtering

ACL
table

NAT
table

A_allow

A

B

C D

I

H

J

is_known_flow()

A_forward A_deny

E

K

L M

F G

ExternalInternal

V+= 4

V+= 1

V+= 2

V+= 4

V+= 8

Figure 2: Stateful_firewall.p4 control flow graph

switch. Second, we consider a switch software bug causing incorrect
installation of rules into tables. Before we present the details of bugs,
let us consider an example P4 program, Stateful_firewall.p4, which
implements a chain of network functions in the P4 data plane.

Stateful_firewall.p4. Fig. 2 shows the control flow graph (CFG)
of the P4 program. The program first checks whether it has
received tcp packet. If so it applies T_stateful_filter.
T_stateful_filter only allows packets from an external net-
work if they belong to a connection initiated by hosts in an inter-
nal network. The table has two actions: A_Set_Known_Flows
action is executed for internal to external traffic and updates
known flows register if the packet’s syn flag is set, and
A_Check_Known_Flows action is executed for external to in-
ternal traffic and checks whether the packet’s flow is seen before.
If seen, the packet will be forwarded, otherwise dropped. Next, the
program applies T_ACL which keeps packet-filtering rules installed
by control plane and executes two actions: A_allow to allow traffic
and A_deny to deny traffic. Finally, T_NAT maps packets with
private IP address space to global IP address space by executing two
actions: A_rewrite rewrites source IP in forward direction and
rewrites destination IP in reverse direction and A_noop.

Security policy. Consider a security policy written for a host
(10.1.1.10) that stores sensitive data. The policy says the host’s
communication to the external network must be encrypted and the
host IP address should be hidden. As shown in Fig. 3(c), ACL table
has rules for only allowing encrypted traffic (i.e., srcport = 443) and
denying all non-encrypted web traffic (e.g., srcport = any) originated
from the host with IP address 10.1.1.10. To hide the host’s private
IP address, the NAT table has a rule that matches with the source IP
address 10.1.1.10 and rewrites it to a public IP address 2.2.2.1. Now
we will demonstrate possible policy violations induced by various
bugs.

D

E F

A

B C

G
T_Stateful_filter

table

is_known_flow()

Without BL Augmentation

Stage 1 Stage 2

H I J

T_NAT table

Stage 4

K L M

T_ACL table

Stage 3

(a) Correct placement of tables

D

E F

A

B C

G
T_Stateful_filter

table

is_known_flow()

Without BL Augmentation

Stage 1 Stage 2

H I J

T_NAT table

Stage 3

K L M
T_ACL table

Stage 4

(b) Incorrect placement of tables

Rule Match Action
R1 srcIP=10.1.1.10, srcport=443, priority=1 Allow
R2 srcIP=10.1.1.10, srcport=*, priority=2 Deny
R3 * Deny

Match Action
srcIP=10.1.1.10 rewrite(srcIP=2.2.2.1)

T_ACL table rules

T_NAT table rules

(c) ACL table and NAT table rules

Figure 3: Statefull_firewall tables to stage mapping and table
rules

Violation due to bugs in compiler. Consider a bug in a compiler
that place tables incorrectly in the data plane [4]. Fig. 3(a) shows
the correct placement of the tables, whereas Fig. 3(b) shows that the
order of ACL and NAT is reversed. As a result, before ACL (stage 4),
NAT is applied (Stage 3). Since the NAT table rewrites the packet’s
source IP address with 2.2.2.1, there will be no matching rule for
2.2.2.1 in the ACL table, and hence, the encrypted packet will be
denied. This demonstrates an incorrect ordering of ACL and NAT
tables due to compiler bugs that can break connectivity, leading to a
policy violation.

Another possible bug is related to incorrect mapping of different
parsed packet header fields to the same data plane resource. Several
hardware programmable switches have a fixed number of bits, called
a packet header vector (PHV), that contains parsed packet headers
and meta-data variables, which are passed from one stage to the
next to get processed by the program. One of the responsibilities
of the compiler is to map packet headers and meta-data variables
defined in the program to bits in the PHV. Since PHV is a limited

SOSR ’21, September 20–21, 2021, Virtual Event, USA K Shiv Kumar, Ranjitha K, P S Prashanth, Mina Tahmasbi Arashloo, Venkanna U., and Praveen Tammana

resource, compilers try to use the same bits in the PHV for different
packet headers whenever possible, for instance, if two packet header
fields have non-overlapping lifetimes in the pipeline. While this is a
crucial optimization, it can lead to non-trivial data corruption if not
implemented correctly, i.e., if the compiler uses the same set of bits
for header fields that have overlapping lifetimes.

Suppose, in our example program, the compiler, by mistake, uses
the same set of PHV bits for dst_port and SYN flag such that
the way it assigns PHV bits causes the fourth bit of dst_port to
overwrite the bit used for the SYN flag. If both the fields were used
in the same stage, one of them could corrupt the value of another.
Now, say a TCP-SYN packet comes from the internal network for
which the 4th bit of the dst_port is zero. Then, that flow will not
be saved in registers as a new flow. Because by mistake, the SYN
flag has been rewritten to zero. So, the other direction of traffic will
not be allowed inside, thus violates the security policy.

Violation due to bugs in the switch software. Similarly, there are
other scenarios like non-deterministic communication delays be-
tween SDN controller and switches [26], or bugs in switch OS
causing packets to match with wrong rules, which can lead to incor-
rect packet processing. More specifically, CacheFlow [35] authors
observed that if the number of table rules to be installed exceeds
TCAM table size, then the switch maintains the extra rules in a
software agent. However, when installing rules in the TCAM, not
all splits of a set of rules present at TCAM, and the agent respect
the cross-rule dependencies. For example, the high priority rules are
maintained by the agent, and the low priority rules are cached in
TCAM. Such incorrect handling of table rules may cause a packet to
hit a cached rule in the TCAM that is supposed to hit a rule in the
software agent, leading to incorrect packet processing. For instance,
in the running security policy example, as shown in Fig. 3(c), the
user expects the ACL table to have two rules, R1 and R2, where each
has a different priority. However, due to the bug, if R2 is cached in
the TCAM and R1 is not, then the SSL traffic with srcport=443 will
be denied, thus violates the policy.

Violation due to bugs in the P4 pipeline. Typically, a P4 pipeline
can have platform-independent programmable blocks (e.g., match-
action tables, parser) and platform-dependent non-programmable
blocks (e.g., PRE, BQE). To fix issues in non-programmable blocks,
the respective switch vendor has to be informed. Consider that there
are two tables, longest-prefix match (LPM) and access control list
(ACL), and the packets are first matched by the LPM table, and a
clone decision is made. Next, the ACL table marks the packets to be
dropped. A potential bug in the packet replication engine (PRE) [48]
could drop the original packet, but however forward the cloned copy
thus violates the policy.

To summarize, bugs at the lower layers (i.e., compiler, switch
software, P4 pipeline) may lead to incorrect packet-processing be-
havior in the data plane causing policy violations. In this work, our
key focus is to check whether the actual packet-processing behavior
is equivalent to the intended behavior. If not, we will detect and raise
alerts.

Augment for path tracking and
assertion validation

Track packet path execution Assertion validation

Packet

Alerts for traffic
violating assertions

Match-Action pipeline stages

P4 program Specification of
assertions

P4 compiler

Switch

Figure 4: DBVal system architecture

Figure 5: The language syntax for DBVal assertions.

3 VALIDATION WITH ASSERTIONS
Suppose a P4 programmer wants to ensure that certain traffic is
processed in the data plane at runtime as intended. Here, we assume
that the P4 program is bug-free, but the packet-processing in the
data plane at runtime may be incorrect because of bugs in other soft-
ware or hardware components (e.g., control plane, compiler, switch
software, P4 pipeline). To validate packet-processing at runtime,
we propose DBVal system as shown in Fig. 4. Using DBVal, the
programmer expresses intended packet-processing behavior through
assertions, where each assertion specifies which tables and actions
should be applied to a subset of traffic. That is, the assertion de-
scribes the intended execution path in terms of a sequence of tables
to be applied and actions to be executed for a subset of traffic. DB-
Val translates these assertions to P4 implementations, which execute
assertions on the incoming traffic at line rate to check whether the
specified traffic indeed followed the specified path in the data plane.
Finally, DBVal raises alerts whenever the expected path is different
from the observed path (violation). To summarize, we let the P4 pro-
grammer tell us what is correct and use it as a reference to validate
what we observed in the data plane.

3.1 The DBVal language
We identify that the language syntax should be expressive enough
to support two key constructs: One construct for expressing the
subset of traffic on which assertions should be applied. Another
for expressing the intended packet execution path in a P4 program.
DBVal’s assertion language is inspired by SDN programming lan-
guages [21, 24] developed for OpenFlow settings. We adapt them

DBVal: Validating P4 Data Plane Runtime Behavior SOSR ’21, September 20–21, 2021, Virtual Event, USA

for P4 settings. Recent works like P4Assert [29] and Poise [34] pro-
posed languages for P4-based programmable data planes. Though
they have constructs to filter packets based on packet header fields
and meta-data fields, but lack the constructs necessary to express
packet execution paths in a P4 program. In this work, we introduce
the syntax necessary to express packet execution paths.

Fig. 5 shows proposed language syntax for DBVal assertions. It
comprises of the following key constructs:

• Path (P): Specifies the intended packet execution path in the
form of regular expressions comprising a sequence of tables
and associated actions in a P4 program.

• Predicate (Pred): In a predicate Pred, operator op indi-
cates comparisons such as <, >, and so on, and in is used
to test whether field f matches with one of the values v
in constant list L. For instance, one could define a list
of ports portlist as ["port1", "port2"] and use it to filter
traffic (filter(md.ingressport in portlist))
or to assert traffic (assert(md.ingressport in
portlist)).

• Filter (FT): Filters traffic on which assert should be applied.
A packet is filtered under two conditions: (1) predicate in the
filter construct evaluates to true, or (2) traverses the specified
intended execution path P.

• Assert (AT): If intended path P is present in assert, it checks
whether the filtered traffic is indeed traversing the path P at
runtime (e.g., assertion A1 in the next section). Instead, if
Pred is present in assert, it ensures only a subset of traffic
that satisfies predicate is traversing certain packet execution
path (e.g., A3 in the next section).

3.2 Example Assertions
Consider the running security policy example presented in §2. Sup-
pose a programmer wants to ensure that encrypted traffic from the
host with IP 10.1.1.10 should be allowed. This property can be
expressed using an assertion:

A1: filter(pkt.srcIP == 10.1.1.10 & pkt.srcPort == 443)
∼ assert(·∗ ACL@allow ·∗)

In this assertion, DBVal first filters traffic with pkt.srcIP =
10.1.1.10 and pkt.srcPort = 443, and then checks whether the al-
low action is executed by the ACL table. Note that the path specified
in the assert construct is a regular expression over a sequence of
tables and actions. Through path constructs, the programmer can
specify the expected set of tables to be applied and actions to be
executed. This means that the regular expression .∗ preceding the
specified path indicates that the filtered packets may be processed
by any other set of tables and actions before the ACL table.

Now consider the problem that ACL and NAT tables are placed
incorrectly due to bugs, because of which the default deny action
is executed by the ACL table. Similarly, if rule R1 is not cached in
the TCAM and kept in the software agent by mistake (as shown in
Fig. 3(c)), then the deny action in rule R2 will be applied. In both
cases, instead of allowing, encrypted packets will be denied, that is
the deny action is executed by the ACL table. DBVal detects this
assertion failure and raises an alert.

Consider another intended behavior that all new TCP connections
initiated from external network must be denied by one of the rules

in the ACL table. More specifically, TCP SYN packets from the
external network to internal hosts must be denied by the ACL table.
This can be expressed via an assertion:

A2: filter(tcp.flags==SYN & md.ing_port in [port1,port2,..])
∼ assert(.*T_ACL@A_deny.*)

This assertion verifies whether TCP connections initiated from the
external network are denied by the ACL table.

Suppose a programmer wants to ensure that new connections
from a specific set of internal hosts should be remembered (using
stateful registers), so that packets in reverse direction can be checked
and allowed. To keep the state secure, the programmer may want
to ensure only new TCP connections from the internal hosts should
access and update known-flows register (see Fig. 2). This assertion
can be written as:

A3: filter(.*A_update_known_flows.*)
∼ assert(hdr.tcp.flags==SYN & hdr.srcIP in [IP1, IP2,..])

This assertion filters packets that traverse the paths with node
A_update_known_flows and then assert whether the filtered
packets are indeed SYN packets originated from the given list of
internal hosts. This assertion shows that intended paths can also be
specified as part of filter construct.

Consider a case where the programmer wants to ensure that cer-
tain packets should be processed by a set of tables and actions in
certain order – if packets are not processed by any one of the tables
then it may result in incorrect packet-processing behavior. More
specifically, consider an assertion that every packet allowed by the
ACL table must be rewritten by the NAT table. It can be written as:

A4: filter(.*T_ACL@A_allow.*)
∼ assert(.*T_NAT@A_rewrite.*)

This assertion first filters packets that are allowed by the ACL table,
and then assert whether rewrite action is executed by the NAT table.
This assertion shows that intended paths can be specified in both
filter construct and assert construct.

Goal. Given the intended packet-processing behavior of a P4 pro-
gram in the form of assertions, our goal is to detect assertion viola-
tions that happen at runtime and raise alerts along with the actual
packet execution path, that is, the set of tables applied and the actions
executed. The alerts could be later used for debugging the cause of
the violation.

4 ASSERTION COMPILATION AND
EXECUTION

Now, we briefly describe two main components of DBVal assertion
compilation process. Fig. 9 shows the code snippet at each step for
the running example.

• Track packet execution path: A packet might take any path
(i.e., a set of tables applied and actions executed) in a P4
program. To track every path in the data plane, we need to
augment the original p4 program such that the augmented P4
program maintains and updates the execution path of packets
in the per-packet state as they go through the program. In
section §4.1, we provide more details on how P4 program is
augmented for tracking packet execution path.

SOSR ’21, September 20–21, 2021, Virtual Event, USA K Shiv Kumar, Ranjitha K, P S Prashanth, Mina Tahmasbi Arashloo, Venkanna U., and Praveen Tammana

Path Value

AHJKM 0

AHJKL 1

AHIKM 2

AHIKL 3

….... …....

ABCEFHJKM 16

ABCEFHJKL 17

ABCEFHIKM 18

ABCEFHIKL 19

Path Value Path Value

AHJKM 0 ABDEFHIKM 10

AHJKL 1 ABDEFHIKL 11

AHIKM 2 ABCEGHJKM 12

AHIKL 3 ABCEGHJKL 13

ABDEGHJKM 4 ABCEGHIKM 14

ABDEGHJKL 5 ABCEGHIKL 15

ABDEGHIKM 6 ABCEFHJKM 16

ABDEGHIKL 7 ABCEFHJKL 17

ABDEFHJKM 8 ABCEFHIKM 18

ABDEFHJKL 9 ABCEFHIKL 19

Figure 6: BL values of paths in statefull_firewall.p4 CFG

D EB
C

G

T_Stateful_filter
table

is_known_flow()

With BL Augmentation

Stage 2 Stage 3

K M

T_NAT table

Stage 5

H J

T_ACL table

Stage 4

A

Stage 1

V+= 4 V+= 8
F

V+= 4
I

V+= 2
L

V+= 1

Figure 7: Mapping augmented CFG to the pipeline

• Assertion execution at line rate: DBVal translates asser-
tions to corresponding P4 implementations (e.g., match-action
table rules, P4 if/else constructs) and annotates the original
P4 program such that the annotated P4 program validates
observed packet execution paths at line rate (more details in
section §4.2).

4.1 Tracking packet execution path
To track every path, we augmented the original p4 program such
that the per-packet state like Packet Header Vector (PHV) is updated
as the packet travels. However, PHV is a scarce resource, thus the
encoding technique should operate under limited memory available
and update PHV with a limited set of operations supported in the data
plane. In our preliminary work, we showed that Ball-Larus encoding
technique, a well-known technique for profiling execution paths in
software [23], is a promising fit for tracking packet execution paths
in P4 programs. This is because P4 programs are loop free and the
encoding does not require sophisticated updates: addition operation
on path variable is sufficient. We use this technique for tracking path
and execute assertions on expected paths of filtered traffic.

Ball-Larus encoding. To keep this paper self-contained, we briefly
present the core idea of Ball-Larus encoding technique. Since P4
programs are loop free, control flow graph (CFG) of a P4 program
is a directed acyclic graph (DAG) where each node represents a
program statement such as table, action, or conditional. The Ball-
Larus encoding algorithm performs reverse topological ordering of
the DAG and assigns a label to each edge such that given a packet
as input, as it transition from one program statement to the next, the
associated edge label is added to the packet’s path variable. Finally,
at the end of DAG (or program) processing, the path variable value
uniquely represents the path the packet has taken in the program.

table membershipCheck
{

keys = {
md.ingress_port : exact;

}
actions = {

membership_check_pass;
membership_check_fail;

}
const entries = {

port1 : membership_check_pass
port2 : membership_check_pass
...
...

}
}

Figure 8: Membership check

Moreover, BL encoding technique can encode all N program paths
in a single 𝑙𝑜𝑔(𝑁)-bit variable, thus adding minimal overhead to
per-packet meta-data that is carried across data-plane stages. After
finishing the program processing, the path variable has a unique
value between 0 to 𝑁 − 1.

Running example. Fig. 2 shows CFG of stateful_firewall.p4, whose
edges are labeled after running the Ball-Larus (BL) encoding tech-
nique. Unlabeled edges have 0 by default, so only non-zero edge
values are shown. As the packet traverses an edge, the associated
edge label is added to the packet’s path variable 𝑉 . Fig. 6 shows
BL value of each path in the CFG which has a total of 20 different
paths from root node 𝐴 to leaf nodes (node 𝑀 and node 𝑁). When
a program completes packet processing, the value 𝑉 will be in the
range of 0 to 19 where each value uniquely identifies the path the
packet has taken. Fig. 7 shows the mapping of P4 program CFG to
stages in PISA pipeline [17].

Limitation. For large P4 programs such as switch.p4 [2] the path
variable size can go as large as few hundred bits, making integer
arithmetic at line rate challenging. Also, updating the same path
variable by multiple tables would force compiler to put the tables
across multiples stages, which are otherwise mapped to the same
stage; this will increase the number of stages. One can handle both
of these challenges by carefully partitioning the original DAG and
assigning a different variable to each partition (i.e., sub-DAG), and
tracking packet execution path separately. DBVal currently uses
single variable BL encoding and it works well for small programs.
In our future work, we plan to extend DBVal for large programs
augmented using the multi-variable BL encoding technique.

4.2 Compiling assertions
In the previous section, we demonstrated a technique to track packet
execution path where at the end of packet-processing, the value in
the path variable uniquely identifies the path a packet has taken in a
P4 program. Now, we present how our assertion compiler translates
assertions to corresponding P4 implementation. More specifically,
each P4 implementation checks whether the path the packet has
taken is one among the expected paths specified in an assertion. If

DBVal: Validating P4 Data Plane Runtime Behavior SOSR ’21, September 20–21, 2021, Virtual Event, USA

P4 program Annotated P4 code after running
Ball-Larus algorithm

Translate assertions
to p4 implementations

Assertion: Allow encrypted traffic from the host
filter(pkt.srcIP=10.1.1.10 & pkt.srcPort = 443) ~

assert(.*ACL@allow.*)

if(hdr.srcIP==10.1.1.10&hdr.srcPort==443)
assertions.apply()

control Ingress {
apply {
if (hdr.tcp.isValid())

T_stateful_filter.apply()
…

T_ACL.apply()
T_NAT.apply()
…
}

control Ingress {
apply {
if (hdr.tcp.isValid())

hdr.md.V+= 4
T_stateful_filter.apply()
…

// operations
}

table T_ACL {
key= {hdr.sip:exact

hdr.sport:ternary}
actions={A_allow,

A_deny}
default_action=A_deny

table T_NAT {
key= {hdr.sip:exact}
actions={A_rewrite,

A_NoAction}
default_action=A_NoAction

action A_deny(..) {
hdr.md.V+ =2
// operations

}

action A_allow(..) {
// operations

}

action A_rewrite(..){
hdr.md.V+= 1
// operations

}

action pass() {
hdr.md.assertion_fail = 0

}
action fail() {

hdr.md.assertion_fail = 1
}

table assertions{
key= {hdr.md.V: range}
actions={pass, fail}
const entries = {

0..1:pass; 4..5:pass;
8..9:pass; 12..13:pass;
16..17:pass;

}
default_action=fail

if(hdr.md.assertion_fail==1)
raise alert

Figure 9: DBVal applies Ball-Larus encoding technique on P4 program control flow graph and track packet execution path in the
P4 program. DBVal installs match-action rules, where each rule match on an intended path specified in an assertion. At the end of
packet processing, the program checks whether the tracked path maintained in hdr.md.V matches with one of the path values of the
intended paths.

not, it indicates an assertion failure, which in turn is reported as an
alert to the control plane for further analysis.

Compiling predicates. As shown in Fig. 5, a predicate can have
comparison operators, membership checks, or both. For instance,
consider a predicate with only comparison operators (=, <, >). The
predicate is translated to a P4 if-else condition to check whether
it evaluates to true or false. Further, the inside of the if-else block
contains the code for either filter or assert. For example, consider
filter in assertion A1 described in section §3. Fig. 9 (right) shows fil-
ter(hdr.srcIP == 10.1.1.10 and hdr.srcPort == 443) is implemented
using the if construct in P4 language, and the if block contains
the code for assertion on the packet execution path, that is, as-
sert(.*ACL@allow.*). Note, a predicate can also be part of an assert
as in assertion A3 described in section §3. Here, the if block contains
code for setting a flag, which indicates that the assertion is passed.

Now consider a predicate with a membership check, that is, check
whether the header value matches with one of the values in a list.
The membership check predicate is translated to match-action table
rules where the table key is the field in the left-hand side of the
operator ’in’, and the table has one rule for each member in the
list on the right-hand side. That is, a membership check on a list
with 𝑛 items [𝑘1,𝑘2,...,𝑘𝑛] is converted to a match-action table with 𝑛
entries. All table entries have the same action, which sets a flag to in-
dicate that the membership check is successful. For example, Fig. 8
has P4 implementation of assertion A2 described in §3. The asser-
tion has a predicate as part of the filter: ((filter(md.ingress_port in

[port1,port2,..]))). The P4 implementation has a table named mem-
bershipCheck with md.ingress_port as key and one match rule for
each port in the list.

Note that predicates in assertions use header values that a packet
has on its arrival at a switch. However, the header values may change
during the packet processing. To ensure assertions are executed on
the original header values, before the execution of instructions in
a P4 program control block starts, we copy the values of headers
specified in the predicates to temporary meta-data variables. These
meta-data variables are carried along with the packet (PHV) till the
end of the pipeline where the predicates are executed. Similarly, if
a predicate contains meta-data variable(s) defined in the original
program, we maintain a separate copy for it. By doing so will ensure
assertion checks are done on the original header values that a packet
has on its arrival at a switch.

Compiling packet execution path. The path construct in an asser-
tion is in the form of a regular expression over a sequence of tables
and actions. Consider that a path construct is used in assert which
indicates the expected packet execution path. Since a regular expres-
sion may correspond to more than one path in a P4 program CFG,
we define the expected set of paths as 𝐸. When we apply Ball-Larus
encoding, at the end of packet processing in the data plane, the path
variable (𝑉) in the packet’s metadata has a path ID.𝑉 represents one
of all possible paths (𝑈) in the program CFG. To summarize, 𝐸 is a
subset of 𝑈 , and our objective is to check whether 𝑉 ∈ 𝐸 (assertion

SOSR ’21, September 20–21, 2021, Virtual Event, USA K Shiv Kumar, Ranjitha K, P S Prashanth, Mina Tahmasbi Arashloo, Venkanna U., and Praveen Tammana

input.p4

CFG
generator

BL encoding BL
augmenter

BL_encoded_input.p4

Assertions.txt
Assertion
compiler

final.p4

BL encoded
CFG

Match-action
table rules P4

compiler

CFG

Figure 10: DBVal Implementation

pass) or not (assertion fail). On the other hand, if path construct is
present in filter, then 𝑉 ∈ 𝐸 result evaluates to true or false.

Similar to the membership check, we implement 𝑉 ∈ 𝐸 check
using a match-action table where the key is 𝑉 . The BL values of the
expected set of paths in 𝐸 form table rules where each rule is either
an exact match on a BL value or a range match on BL values. All
rules have the same action which sets a flag to indicate either the
assertion is passed (for assert) or the condition is true (for filter).
For example, consider assert(.*T_ACL@A_allow.*) part in assertion
A1. From the BL encoded CFG (as shown in Fig. 2), we retrieve
all BL values of paths traversing the node A_allow and program
assertion table with rules matching on the retrieved BL values (i.e.,
𝐸). Fig. 9 (right) shows its P4 implementation, where there are 10
different paths with BL values {0,1,4,5,8,9,12,13,16,17}. hdr.md.V
is a per-packet meta-data variable that carries the BL value of the
path the packet has traversed in the P4 program. We follow the same
steps if the path is specified in a filter, except that the action part now
sets a flag to indicate that the packet is filtered.

Optimizations. Certain assertions on large P4 programs may need
many TCAM entries, especially to perform range match. Since
TCAM is a scarce resource, one can explore SRAM-based packet
classification algorithms like BDDs [32] at the cost of an increase
in the number of stages in the pipeline. Other alternatives are using
bloom filters for membership check at the cost of false positives,
or perfect hash functions [1] at the cost of need for custom hash
functions in the data plane. Another optimization is, if too many
filtered packets fail assertion, an alert for each packet may congest
the data- and control plane interface. To address this issue, we should
consider restricting alert frequency either by sampling 1 out of 𝑁
packets that fail assertions or by maintaining per-assertion per-epoch
alerts count and use the count to decide whether to forward the alert
or not, both can be implemented in the data plane.

Limitation. Currently, our design requires assertions to be written
before the P4 program deployment. This design choice is made as it
is simple and uses optimal data-plane resources. More specifically,
DBVal filters traffic based on packet header fields that are present
in assertions. In our future work, we plan to provide support for
filtering traffic based on standard packet headers, so that one can
add new assertions by simply adding rules to an existing match-
action table at the cost of using extra data-plane resources. This will

Field Metadata fields, Packet header fields
Predicate Boolean expressions, P4 table rules and actions
Operator Comparison operators in P4 (==, <, >, <=, >=, !=)
Values Integer, Hexadecimal, IP address, True, False
List Const entries in P4 table
- -
Path P4 table with meta-data path variable (V) as key

and BL values of intended program paths as rules
Assert If/Else conditions, P4 table rules and actions
Filter If/Else conditions, P4 table rules and actions

Mapping of assertion
language constructs
to P4 implementation

Figure 11: Mapping of assertion language constructs to P4 lan-
guage constructs

avoid recompiling the P4 program and enables adding or deleting
assertions dynamically.

5 IMPLEMENTATION
This section presents the implementation details of DBVal prototype1

working on two targets: BMv2 [16] and Intel Barefoot Tofino [17].
Fig. 10 shows the end-to-end workflow of our system. It mainly
comprises of two modules: Ball-Larus encoding module and As-
sertion compiler module. Implementation details of each module
are given below. Fig. 11 shows the mapping of constructs in the
assertion language to constructs in P4 language.

Ball-Larus (BL) encoding. This module takes the original P4 pro-
gram as input and generates a BL-encoded P4 program. More specif-
ically, for a given P4 program, CFG generator generates CFG from
.dot and .json files generated by two compilers: open-source P4
compiler p4c [6] and Tofino switch compiler. Instead of relying on
the P4 compiler, we can also generate the CFG by parsing the P4
program control blocks. Next, we run the Ball-Larus algorithm on
the CFG and get the BL-encoded CFG. Finally, the BL augmenter
parses the original P4 program line by line and augments the condi-
tional statements and table actions in the control block with metadata
variable and the arithmetic addition operation on this variable. The
code is about 500 lines written in Python and the CFG is represented
using the NetworkX2.2 library.

Assertion compiler. This module adds the code for assertion exe-
cution to the BL-encoded P4 program generated in the prior step.

1https://github.com/networked-systems-iith/DBValidator.git

DBVal: Validating P4 Data Plane Runtime Behavior SOSR ’21, September 20–21, 2021, Virtual Event, USA

More specifically, the assertion compiler takes three inputs: (1) As-
sertions written following the assertion language syntax (Fig. 5); (2)
BL-encoded CFG; and (3) BL-encoded P4 program. The assertion
compiler translates each assertion to P4 code snippet where match-
action table rules are derived after parsing BL encoded CFG, and
then annotate the BL-encoded P4 program with table definitions and
static rules. To summarize, the final annotated p4 program maintains
packet execution path in BL variable (𝑉) and uses𝑉 along with other
packet header and metadata fields as table match keys. The code
for the assertion language compiler is written in C language using
two libraries: Bison 3.0.4 as the syntax parser and flex 2.6.0 as the
lexer. The code for assertion augmentation is written in Python with
around 350 lines of code.

6 EVALUATION
Our main goal for evaluation is to study (1) how effective DBVal
is in detecting packet-processing errors induced by bugs at runtime,
(2) how expressive the DBVal assertion language is, and (3) what is
the DBVal overhead in terms of the data-plane resources required to
execute assertions.

6.1 Bug detection using DBVal
Now we demonstrate how DBVal is able to detect incorrect packet-
processing behavior induced by the bugs described in the moti-
vation section (§2). We compiled assertion A1 written for state-
full_firewall.p4 program, annotate the P4 program, and deployed
the annotated P4 program on the Tofino switch software model tar-
get that is part of the software development environment (SDE).
We synthetically created the compiler bug and switch software bug
described in Section §2 and checked whether DBVal successfully
detects incorrect packet-processing.

According to the assertion A1, filtered packets must traverse
T_ACL@A_allow edge in the CFG shown in Fig. 2. So the asser-
tions table is programmed with a set of expected BL values (𝐸)
{0,1,4,5,8,9,12,13,16,17}. Now, consider a security policy violation
due to a compiler bug where ACL and NAT tables are placed in re-
verse order. We emulate incorrect table placement bug by modifying
the annotated Stateful_firewall.p4 program such that the program
applies NAT table before ACL table. We also install the table rules
shown in Fig. 3(c). As a consequence, a packet will now traverse
T_NAT@A_rewrite edge followed by T_ACL@A_deny edge. So the
set of observed BL values (𝑂) is {3,7,11,15,19}, and the packet
meta-data variable hdr.md.V (in short 𝑉) will now contain one of
the values in set 𝑂 (i.e., 𝑉 ∈ 𝑂). Since 𝐸 ∩𝑂 = 𝑛𝑢𝑙𝑙 , 𝑉 ∉ 𝐸 which
means 𝑉 would not match with any rule in assertions table, hence,
an assertion failure alert is sent to the control plane.

Now, consider another violation due to a bug in the switch soft-
ware. We synthetically created this bug by deleting allow rule 𝑅1
in Fig. 3(c). As a consequence, a packet with source IP address
10.1.1.10 and source port 443 will now hit the ACL deny rule 𝑅2.
In other words, the packet traverses T_ACL@A_deny edge with 𝑂

= {2,3,6,7,10,11,14,15,18,19}. As 𝑉 ∈ 𝑂 and 𝐸 ∩𝑂 = 𝑛𝑢𝑙𝑙 , 𝑉 ∉ 𝐸

will become true, that is, no rule in assertions table matches with 𝑉 ,
hence, the data plane raises assertion failure alert to the controller.

Limitation. DBVal can detect incorrect packet-processing behavior
only if the set of tables and actions in the observed path does not

match with any of the sets in the expected paths. In a situation where
the set of tables and actions in the observed path matches with a set
in the expected paths, but is executed in a different order (possibly
due to bugs), DBVal cannot detect such bugs. This is because DBVal
tracks a packet execution path by adding augmented BL value along
the path the packet traverses. Since addition is commutative, for a
given set of tables and actions, the BL value will be the same for all
possible execution orders in the set.

For instance, in the running stateful_firewall.p4 example with
assertion A1, consider that the control plane has installed an arbitrary
set of rules (includes faulty rules) into ACL and NAT tables, such that
ACL table has a single rule allowing all packets and NAT table has
a single rule that rewrites all packets. Then, though ACL and NAT
are reversed due to the compiler bug, DBVal cannot detect this bug
because all packets execute NAT@rewrite followed by ACL@allow;
the corresponding BL value matches with the BL values of one of
the expected paths that have ACL@allow followed by NAT@rewrite.
Here, though the order is different, the set of tables and actions are
the same. Note that in real networks, an ACL table typically has a
default deny and allow rules for each traffic class; a default allow
used in this example can be considered as a faulty rule installed by
mistake.

Summary. To summarize, the use cases demonstrate DBVal is able
to validate actual packet-processing behavior and raise alerts when-
ever the actual behavior (interms of a set of tables and actions) does
not match with the intended behavior.

6.2 Assertion language expressiveness
We compiled assertions written for a total of eight programs of vary-
ing size and complexity, listed in Table 1. The programs are taken
from three main sources: P4 learning [12], P4 programs survey [13],
and P4 tutorials [5]. We carefully go through each P4 program and
identify the intended packet-processing behavior of certain traffic
classes. For P4 programs 1 - 7 , we identify intended behavior, es-
pecially path-specific properties to be satisfied in the data plane. For
8 , we derive assertions based on the comments available in the

program.
Next, we expressed the intended behavior in terms of assertions

using DBVal assertion language. Each assertion is written using
three kinds of per-packet information: packet headers fields (PHF),
meta-data fields (MF), and packet execution path (P). The conditions
on these field values must be satisfied (assert) to execute an action,
or to update a register. For example, the second assertion written for
1 heavy_hitter.p4 program checks whether bloom filter maintained

in the switch registers (update_bloom_filter) is updated by tcp traffic
only; the second assertion for 7 stateful_firewall checks whether
all tcp syn packets arriving on port 2 (external network) are blocked;
the first assertion for 8 hula.p4 program checks whether best path
to a destination is updated whenever queue depth carried in a hula
packet is less than the current queue depth.

The last column in Table 1 shows which information is used by
filter and assert constructs in the assertions written for respective
P4 program. To summarize, the flexibility to use different kinds of
information in filter and assert constructs enables the programmers
to check different kinds of properties at runtime.

SOSR ’21, September 20–21, 2021, Virtual Event, USA K Shiv Kumar, Ranjitha K, P S Prashanth, Mina Tahmasbi Arashloo, Venkanna U., and Praveen Tammana

S.No. P4 Program List of assertions (filter, assert)

1. heavy_hitter.p4 [10]
1. filter(meta.counter_one >THRESHOLD &

meta.counter_two >THRESHOLD) ∼ assert(.*MyIngress@drop.*)
2. filter(.*update_bloom_filter.*) ∼ assert(hdr.tcp.isValid() == true)

1. (MF, PHF)
2. (P, MF)

2. traceroutable.p4 [15]
1. filter(.*set_nhop.*) ∼ assert(hdr.ipv4.isValid() == true & hdr.ipv4.ttl >1)
2. filter(hdr.ipv4.ttl == 1) ∼ assert(hdr.ipv4.protocol == 1)

1. (P, MF and PHF)
2. (PHF, PHF)

3. flowlet_switching.p4 [8] 1. filter(.*MyIngress@drop.*) ∼ assert(hdr.ipv4.ttl == 0) 1. (P, PHF)

4. ip_forwarding.p4 [9]
1. filter(.*ipv4_lpm@ipv4_forward.*) ∼ assert(hdr.ipv4.isValid() == true)
2. filter(.*ipv4_lpm@ipv4_forward.*) ∼ assert(hdr.ipv4.ttl >0)

1. (P, MF)
2. (P, PHF)

5. fast_reroute.p4 [19] 1. filter(meta.linkState >0) ∼ assert(.*read_alternativePort.*) 1. (MF, P)

6. mpls.p4 [11]

1. filter(dstIP == X)∼ assert(.*fec_to_label@ add_mpls_header *
mpls_tbl@mpls_forward.*)

2. filter(.*fec_to_label.*) ∼ assert(meta.is_ingress_border == 1 &
hdr.ethernet.etherType == TYPE_IPV4)

3. filter(.*mpls_forward.*) ∼ assert(hdr.ethernet.etherType == TYPE_MPLS)

1. (PHF, P)
2. (P, MF and PHF)
3. (P, PHF)

7. stateful_firewall.p4 [14]

1. filter(.*set_allowed.*) ∼ assert(hdr.tcp.syn == 1 &
standard_metadata.ingress_port == 1)

2. filter(hdr.tcp.syn == 1 & standard_metadata.ingress_port == 2) ∼
assert(.*acl@deny.*)

3. filter(.*MyIngress@allow.*) ∼ assert(hdr.tcp.flags != 2 &
meta.ingress_port == 2 & meta.register_cell_one == 1)

1. (P, PHF and MF)
2. (PHF and MF, P)
3. (P, PHF and MF)

8. hula.p4 [36]

1. filter(hdr.hula.isValid() == true & hdr.hula.qdepth < meta.old_qdepth) ∼
assert(.*MyIngress.change_best_path_at_dst.*)

2. filter(hdr.ipv4.isValid() == true & meta.port == 0) ∼
assert(.*MyIngress.hula_nhop@MyIngress.hula_get_nhop.*)

3. assert(.*MyIngress.change_best_path_at_dst^MyIngress.return_hula_to_src.*)

1. (MF, P)
2. (MF, P)
3. (-, P)

Table 1: A summary of our benchmark programs and assertions. P:Packet execution path, MF:Meta-data field, PHF:Packet header
field.

S.No. P4 Program
(LOC in original
P4 program,
Total #Paths)

(LOC,
#Tables,
#Actions,
#If/Else blocks)
added

(#PHV bits,
#Range rules,
#ALUs) used

Compilation time (in secs)

1. heavy_hitter.p4 (228, 9) (72, 2, 4, 2) (6 bits, 2, 4) 0.0832
2. traceroutable.p4 (236, 5) (57, 1, 4, 3) (5 bits, 1, 4) 0.0843
3. flowlet_switching.p4 (239, 6) (37, 1, 2, 1) (4 bits, 1, 2) 0.0804
4. ip_forwarding.p4 (152, 3) (67, 2, 4, 2) (4 bits, 2, 3) 0.0663
5. fast_reroute.p4 (190, 8) (36, 1, 2, 1) (4 bits, 2, 3) 0.074
6. mpls.p4 (244, 32) (119, 3, 6, 3) (8 bits, 12, 8) 0.0827
7. stateful_firewall.p4 (318, 190) (190, 3, 6, 3) (11 bits, 77, 47) 0.0992
8. hula.p4 (449, 15) (45, 3, 6, 2) (7 bits, 3, 13) 0.087

Table 2: Extra data-plane resources needed for executing assertions and the time taken to compile the assertions.

6.3 Data-plane Overhead
We deployed annotated P4 programs on the BMv2 switch and cal-
culated the overhead in terms of data-plane resources required both
to track packet execution path and execute assertions written for
respective P4 program (as shown in Table 1). To the best of the au-
thors knowledge, P4 programs written for the Tofino software switch

model are not publicly available. So the evaluation is performed on
P4 programs written for the BMV2 software switch.

Data-plane Overhead. The third and fourth columns in Table 2 sum-
marize the data-plane resources required to execute assertions to-
gether for each program. One column shows the lines of code (LOC),
tables, actions, and if/else blocks added to the original program. They
are needed to filter packets and to update flags that indicate whether

DBVal: Validating P4 Data Plane Runtime Behavior SOSR ’21, September 20–21, 2021, Virtual Event, USA

the assertion is pass or fail. The other column shows the number of
bits required in per-packet metadata (PHV), number of ranges rules,
and ALUs. More specifically, the number of PHV bits is equal to the
sum of log(#𝑃𝑎𝑡ℎ𝑠)-bits and the number of assertions (one bit per
assertion). Range rules are required to match on path ID carried in
Ball-Larus variable (𝑉). Finally, we calculate required ALUs as the
sum of the number of updates to BL variable (𝑉) and the number of
comparison operators in if/else conditions.

As expected, an assertion written for a program with more LOC
needs more PHV bits, table rules, and ALUs. This is because the con-
trol flow graph has more nodes, thereby more PHV bits are required
to uniquely identify packet path. This overhead is significantly small
compared to the existing switches with a few thousand PHV bits.
The number of range-based table rules required would depend on
the number of paths to the table or action specified in an assertion.
Finally, the number of ALUs required is proportional to the number
of edges as the BL variable (𝑉) has to be updated on each edge
transition. Moreover, as the number of per-program assertions in-
creases, the rules, PHV bits, and ALUs also increase. Currently, we
assign one bit (flag) for each assertion, and the bit value determines
whether an assertion is pass or fail. Predicates on packet header
fields and meta-data fields in an assertion are implemented using
if/else statements. The comparison operations in an if/else condition
uses ALUs on the switch hardware, therefore the number of ALUs
required increases with the number of comparison operations in each
assertion and the number of assertions.

Compilation time. We compiled assertions on a VM equipped with
i5-9300H 2-core 2.44 GHz CPU and 4 GB of RAM. The fifth column
in Table 2 shows the time taken by the assertion compiler to translate
assertions in Table 1 to P4 implementations for each P4 program.
We observe that assertions are compiled in less than 0.1 seconds.

7 RELATED WORK
Assertions. P4Assert [29, 43] performs static verification on P4
programs using symbolic execution technique; it translates P4 pro-
gram annotated with assertions to C model, and verify C model to
find bugs before the program deployment. In contrast, DBVal asser-
tions validate observed behavior in the data plane at runtime after
the deployment. Moreover, our language allows users to express
fine-grained data-plane behavior at the level of tables applied and
actions executed on a subset of traffic. SDN-Assert [24] proposes
an assertion-based debugging language to verify dynamic proper-
ties of controller applications written for OpenFlow-based switches.
Whereas DBVal is designed for P4-based switches.

P4 Program Verification. Recent work [28, 29, 39, 40, 50] per-
forms static analysis to verify P4 program properties and find bugs
before the program is deployed. However, not all properties can yet
be verified by the existing tools, and these tools still operate at the
level of the P4 program. That is, they can verify if the P4 program
logic is bug-free for a specific set of bugs. Thus, these tools are not
designed to detect bugs in switch operating systems, P4 pipeline, or
compilers, especially non open-source compilers that cause incor-
rect packet-processing behavior. DBVal is complementary to these
works.

P4 Compiler Bug Detection. P4Fuzz [20] automatically fuzzes P4
compilers written for different targets and find bugs and vulnerabili-
ties in compilers. It generates syntactically and semantically valid
P4 programs, and sends test packets to check whether programs
are compiled and deployed correctly. Gauntlet [46] finds crash bugs
and semantic bugs in P4 compilers via random program generation,
translation, validation, and model-based testing. Our approach is
different from Gauntlet and P4Fuzz as we focus on detecting packet-
processing errors due to bugs in different components (e.g., compiler,
control-plane programs, data-plane state, run-time system) after the
program is deployed. Hence DBVal nicely complements existing
works by helping to uncover bugs in other components.

Test Packet Generation. Previous work such as ATPG [51] and
P4pktgen [44] study the automatic generation of test packets from
specifications of network devices. P4RL [49], as an enhancement to
these methods, uses reinforcement learning-enabled fuzzing to vali-
date switch behavior at runtime. A follow-up work P6 [48], reduces
input search space and efficiently detect, localize, and patch bugs at
runtime. PTA [25] proposes a portable test architecture framework
that allows existing verification tools to re-configure and tests the
hardware. The automatic test packet generation approach may not
exercise every packet-processing scenario possible after deployment
in useful time, especially for large programs with table rules not
known before the deployment. In contrast to these works, DBVal con-
siders the actual packet as a test packet, and it can potentially detect
packet-processing errors that trigger only with a certain sequence
of packets, table rules, and data-plane state in registers, which may
not be exercised during testing. As a result, DBVal can complement
these works by enabling the detection of bugs on paths not exercised
during testing.

Data-Plane Post-Cards. Previous work [30, 47, 52] has explored
collecting information about a packet into a “post-card” as it tra-
verses the switch and sending relevant post-cards to a controller to
validate observed behavior. NetSight’s post-card [30] includes the
packet header, its outgoing port, and the version number for the rules
installed on the switch that processed the packet but does not track
which tables and actions have been hit by the packet. P4Consist [47]
copies in-band telemetry data and multi-hop route inspection data
comprising switch id, port id, and rule id, onto its postcard. How-
ever, this work focuses on validation of paths at network level. In
contrast, DBVal design focuses on doing validation at switch level
efficiently. KeySight [52] copies every packet field read and written
at each match-action table into a post card, which has high overhead
in terms of bits required in packet metadata, especially for large
P4 programs. DBVal significantly reduces metadata bits required
for tracking by using Ball-larus encoding technique. One can ex-
tend DBVal to validate network-level paths by efficiently tagging
switch-level execution path to packet headers and detag at the edge.

8 DISCUSSION
Minimal trusted base. DBVal depends on the P4 compiler to com-
pile the instructions of the BL augmentation part and the assertions
execution in the data plane. The minimum trust expected from the P4
compiler is to compile correctly (a) the Ball-Larus encoding instruc-
tions required for path tracking, and (b) the P4 code that executes

SOSR ’21, September 20–21, 2021, Virtual Event, USA K Shiv Kumar, Ranjitha K, P S Prashanth, Mina Tahmasbi Arashloo, Venkanna U., and Praveen Tammana

assertions on the observed path. However, a bug in the P4 compiler
could not only lead to incorrect packet processing behaviors dis-
cussed in the paper, but also lead to incorrect implementation of
DBVal components, that is, path tracking and assertion execution
in the data plane. Since DBVal captures the intended behavior in-
dependent of the underlying toolchain (P4 compiler), DBVal can
still detect whenever policy violation happens through an assertion
failure alert. But it cannot pinpoint whether the failure is because of
the incorrect compilation of the DBVal components or the original
P4 program. In either way, the policy violation detection would help
in detecting P4 compiler bugs.

Bug localization. DBVal design aims for detecting a mismatch be-
tween the expected packet execution path and the observed path for
a certain traffic class. It tracks the execution path of every packet
and raises an alert (along with path ID) whenever the observed path
is not in the list of expected paths. From the observed path ID and
the expected path IDs, one can localize to a point (table and action)
at which the observed path deviates from the expected ones. Though
this is useful information, it may not be sufficient to localize and
identify the cause (bug) of the deviation. A recent work [48] local-
izes and patches software bugs in P4 programs. Extending DBVal
for bug localization can be potential future research.

Extending DBVal’s assertion language. Using DBVal assertion
language, a P4 program can write assertions on the packet execution
path of a certain traffic class that he/she is interested in. The assertion
language can be extended to support assertions on expected relations
among header fields. For example, to check whether the TTL value
was decremented as expected, or whether the source MAC address
at egress is the same as the destination MAC at ingress, etc. Such as-
sertions on packet relations can be reduced to path-based assertions;
check whether the action that decrements TTL, or the action that
updates MAC address is present in the observed packet execution
path.

9 CONCLUSION
We present DBVal system for detecting packet-processing errors in-
duced by bugs in the P4 software and hardware ecosystem. Through
assertions, we let the P4 programmers specify intended behavior
interms of assertions on which tables and actions should be applied
on a subset of traffic. DBVal compiler automatically translates as-
sertions to P4 implementations and validates the actual behavior,
that is, packet execution path at line rate. To track execution path of
every packet, we apply Ball-Larus encoding technique that works
well under the switch resource constraints. We prototype DBVal for
two P4 targets: BMV2 and Tofino software switch, and successfully
compiled assertions written for a variety of P4 programs.

10 ACKNOWLEDGEMENTS
We thank the shepherd of our paper, Andreas Voellmy, and the anony-
mous reviewers for their thoughtful feedback. The paper writing has
improved substantially by addressing their comments. We also thank
Jennifer Rexford, Suriya Kodeshwaran, Harish S A, for their valu-
able feedback on the earlier drafts and for their participation in the
discussions. This work is supported by a startup grant awarded by
IIT Hyderabad and a fellowship by DST NM-ICPS TiHAN.

REFERENCES
[1] 2012. C Minimal Perfect Hashing Library. Retrieved June 2021 from http:

//cmph.sourceforge.net/
[2] 2015. BMv2 switch.p4. Retrieved May 2021 from https://github.com/p4lang/

switch
[3] 2016. Netronome Agilio CX SmartNICs. Retrieved June 2021 from https://www.

netronome.com/products/agilio-cx/
[4] 2017. Network path not found? Forward Networks Blog. Retrieved February

2021 from https://bit.ly/2FzpEEZ
[5] 2017. P4 tutorials. Retrieved February 2020 from https://github.com/p4lang
[6] 2017. p4c issues. https://github.com/p4lang/p4c/issues
[7] 2018. Intel FPGAs and Programmable Devices. https://www.intel.in/content/

www/in/en/products/programmable.html
[8] 2019. flowlet_switching.p4. Retrieved June 2021 from https://github.com/nsg-

ethz/p4-learning/blob/master/exercises/05-Flowlet_Switching/solution/p4src/
flowlet_switching.p4

[9] 2019. forwarding.p4. Retrieved June 2021 from https://github.com/nsg-ethz/p4-
learning/blob/master/examples/ip_forwarding/forwarding.p4

[10] 2019. heavy_hitter.p4. Retrieved June 2021 from https://github.com/nsg-ethz/p4-
learning/blob/master/examples/heavy_hitter/heavy_hitter.p4

[11] 2019. mpls.p4. Retrieved June 2021 from https://github.com/nsg-ethz/p4-
learning/blob/master/exercises/04-MPLS/mpls_basics/solution/basics.p4

[12] 2019. P4 learning. Retrieved January 2021 from https://github.com/nsg-ethz/p4-
learning

[13] 2019. P4 programs survey. Retrieved June 2021 from https://github.com/
muhe1991/p4-programs-survey

[14] 2019. stateful_firewall.p4. Retrieved June 2021 from https://github.com/nsg-
ethz/p4-learning/blob/master/examples/stateful_firewall/stateful_firewall.p4

[15] 2019. traceroutable.p4. Retrieved June 2021 from https://github.com/nsg-ethz/p4-
learning/blob/master/exercises/09-Traceroutable/solution/p4src/traceroutable.p4

[16] 2020. BMV2 software switch. Retrieved April 2021 from https://github.com/
p4lang/behavioral-model

[17] 2020. Tofino, World’s Fastest P4-Programmable Ethernet Switch ASICs. Retrieved
November 2019 from https://www.barefootnetworks.com/products/brief-tofino/

[18] 2021. DBVal code. https://github.com/networked-systems-iith/DBValidator.git
[19] 2021. fast_reroute.p4. Retrieved June 2021 from https://github.com/nsg-ethz/p4-

learning/blob/master/exercises/12-Fast-Reroute/solution/p4src/fast_reroute.p4
[20] Andrei-Alexandru Agape, Madalin Claudiu Danceanu, Rene Rydhof Hansen, and

Stefan Schmid. 2021. P4Fuzz: Compiler Fuzzer for Dependable Programmable
Dataplanes. In International Conference on Distributed Computing and Network-
ing 2021.

[21] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter
Kozen, Cole Schlesinger, and David Walker. 2014. NetKAT: Semantic Foundations
for Networks. In POPL.

[22] Jiasong Bai, Menghao Zhang, Guanyu Li, Chang Liu, Mingwei Xu, and Hongxin
Hu. 2020. FastFE: Accelerating ML-based Traffic Analysis with Programmable
Switches. In ACM SIGCOMM SPIN workshop.

[23] Thomas Ball and James R. Larus. 1996. Efficient Path Profiling. In MICRO.
[24] Ryan Beckett, Xuan Kelvin Zou, Shuyuan Zhang, Sharad Malik, Jennifer Rex-

ford, and David Walker. 2014. An Assertion Language for Debugging SDN
Applications. In Workshop on Hot topics in software defined networking.

[25] Pietro Bressana, Noa Zilberman, and Robert Soulé. 2020. Finding hard-to-find
data plane bugs with a PTA. In CoNEXT.

[26] Marco Canini, Daniele Venzano, Peter Perešíni, Dejan Kostić, and Jennifer Rex-
ford. 2012. A NICE Way to Test OpenFlow Applications. In USENIX NSDI.

[27] Marinos Dimolianis, Adam Pavlidis, and Vasilis Maglaris. 2020. A Multi-Feature
DDoS Detection Schema on P4 Network Hardware. In ICIN.

[28] Dragos Dumitrescu, Radu Stoenescu, Lorina Negreanu, and Costin Raiciu. 2020.
bf4: towards bug-free P4 programs. In ACM SIGCOMM.

[29] Lucas Freire, Miguel Neves, Lucas Leal, Kirill Levchenko, Alberto Schaeffer-
Filho, and Marinho Barcellos. 2018. Uncovering Bugs in P4 Programs with
Assertion-Based Verification. In ACM SOSR.

[30] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Mazières, and
Nick McKeown. 2014. I Know What Your Packet Did Last Hop: Using Packet
Histories to Troubleshoot Networks. In USENIX NSDI.

[31] Kuo-Feng Hsu, Ryan Beckett, Ang Chen, Jennifer Rexford, and David Walker.
2020. Contra: A Programmable System for Performance-aware Routing. In
USENIX NSDI.

[32] Theo Jepsen, Ali Fattaholmanan, Masoud Moshref, Nate Foster, Antonio
Carzaniga, and Robert Soulé. 2020. Forwarding and Routing with Packet Sub-
scriptions. In CoNEXT.

[33] Qiao Kang, Jiarong Xing, and Ang Chen. 2019. Automated Attack Discovery in
Data Plane Systems. In USENIX CSET.

[34] Qiao Kang, Lei Xue, Adam Morrison, Yuxin Tang, Ang Chen, and Xiapu Luo.
2020. Programmable In-Network Security for Context-aware BYOD Policies. In
USENIX Security.

http://cmph.sourceforge.net/
http://cmph.sourceforge.net/
https://github.com/p4lang/switch
https://github.com/p4lang/switch
https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/
https://bit.ly/2FzpEEZ
https://github.com/p4lang
https://github.com/p4lang/p4c/issues
https://www.intel.in/content/www/in/en/products/programmable.html
https://www.intel.in/content/www/in/en/products/programmable.html
https://github.com/nsg-ethz/p4-learning/blob/master/exercises/05-Flowlet_Switching/solution/p4src/flowlet_switching.p4
https://github.com/nsg-ethz/p4-learning/blob/master/exercises/05-Flowlet_Switching/solution/p4src/flowlet_switching.p4
https://github.com/nsg-ethz/p4-learning/blob/master/exercises/05-Flowlet_Switching/solution/p4src/flowlet_switching.p4
https://github.com/nsg-ethz/p4-learning/blob/master/examples/ip_forwarding/forwarding.p4
https://github.com/nsg-ethz/p4-learning/blob/master/examples/ip_forwarding/forwarding.p4
https://github.com/nsg-ethz/p4-learning/blob/master/examples/heavy_hitter/heavy_hitter.p4
https://github.com/nsg-ethz/p4-learning/blob/master/examples/heavy_hitter/heavy_hitter.p4
https://github.com/nsg-ethz/p4-learning/blob/master/exercises/04-MPLS/mpls_basics/solution/basics.p4
https://github.com/nsg-ethz/p4-learning/blob/master/exercises/04-MPLS/mpls_basics/solution/basics.p4
https://github.com/nsg-ethz/p4-learning
https://github.com/nsg-ethz/p4-learning
https://github.com/muhe1991/p4-programs-survey
https://github.com/muhe1991/p4-programs-survey
https://github.com/nsg-ethz/p4-learning/blob/master/examples/stateful_firewall/stateful_firewall.p4
https://github.com/nsg-ethz/p4-learning/blob/master/examples/stateful_firewall/stateful_firewall.p4
https://github.com/nsg-ethz/p4-learning/blob/master/exercises/09-Traceroutable/solution/p4src/traceroutable.p4
https://github.com/nsg-ethz/p4-learning/blob/master/exercises/09-Traceroutable/solution/p4src/traceroutable.p4
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://www.barefootnetworks.com/products/brief-tofino/
https://github.com/networked-systems-iith/DBValidator.git
https://github.com/nsg-ethz/p4-learning/blob/master/exercises/12-Fast-Reroute/solution/p4src/fast_reroute.p4
https://github.com/nsg-ethz/p4-learning/blob/master/exercises/12-Fast-Reroute/solution/p4src/fast_reroute.p4

DBVal: Validating P4 Data Plane Runtime Behavior SOSR ’21, September 20–21, 2021, Virtual Event, USA

[35] Naga Katta, Omid Alipourfard, Jennifer Rexford, and David Walker. 2016.
CacheFlow: Dependency-Aware Rule-Caching for Software-Defined Networks.
In ACM SOSR.

[36] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer
Rexford. 2016. HULA: Scalable Load Balancing UsingProgrammable Data Planes.
In ACM SOSR.

[37] Daehyeok Kim, Zaoxing Liu, Yibo Zhu, Changhoon Kim, Jeongkeun Lee, Vyas
Sekar, and Srinivasan Seshan. 2020. TEA: Enabling State-Intensive Network
Functions on Programmable Switches. In ACM SIGCOMM.

[38] Suriya Kodeswaran, Mina Tahmasbi Arashloo, Praveen Tammana, and Jennifer
Rexford. 2020. Tracking P4 Program Execution in the Data Plane. In ACM SOSR.

[39] Jed Liu, William Hallahan, Cole Schlesinger, Milad Sharif, Jeongkeun Lee, Robert
Soulé, Han Wang, Călin Caşcaval, Nick McKeown, and Nate Foster. 2018. P4V:
Practical Verification for Programmable Data Planes. In ACM SIGCOMM.

[40] Nuno Lopes, Nikolaj Bjørner, Nick McKeown, Andrey Rybalchenko, Dan Talayco,
and George Varghese. 2016. Automatically Verifying Reachability and Well-
Formedness in P4 Networks. MSR Technical Report, MSR-TR-2016-65 (2016).

[41] Roland Meier, Thomas Holterbach, Stephan Keck, Matthias Stähli, Vincent
Lenders, Ankit Singla, and Laurent Vanbever. 2019. (Self) Driving Under the
Influence: Intoxicating Adversarial Network Inputs. In ACM HotNets.

[42] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017.
Silkroad: Making stateful layer-4 load balancing fast and cheap using switching
asics. In ACM SIGCOMM.

[43] Miguel Neves, Lucas Freire, Alberto Schaeffer-Filho, and Marinho Barcellos.
2018. Verification of P4 Programs in Feasible Time using Assertions. In CoNEXT.

[44] Andres Nötzli, Jehandad Khan, Andy Fingerhut, Clark Barrett, and Peter Athanas.
2018. P4pktgen: Automated Test Case Generation for P4 Programs. In ACM
SOSR.

[45] O’Connor Vachuska Peterson, Cascone and Davie. 2020. Software-Defined Net-
works: A Systems Approach. https://sdn.systemsapproach.org/ Accessed: June
2021.

[46] Fabian Ruffy, Tao Wang, and Anirudh Sivaraman. 2020. Gauntlet: Finding Bugs
in Compilers for Programmable Packet Processing. In USENIX OSDI.

[47] Apoorv Shukla, Seifeddine Fathalli, Thomas Zinner, Artur Hecker, and Stefan
Schmid. 2020. P4CONSIST: Toward Consistent P4 SDNs. IEEE Journal on
Selected Areas in Communications 38, 7 (2020), 1293–1307.

[48] Apoorv Shukla, Kevin Hudemann, Zsolt Vági, Lily Hügerich, Georgios Smarag-
dakis, Artur Hecker, Stefan Schmid, and Anja Feldmann. 2021. Fix with P6:
Verifying Programmable Switches at Runtime. In IEEE INFOCOM.

[49] Apoorv Shukla, Kevin Nico Hudemann, Artur Hecker, and Stefan Schmid. 2019.
Runtime Verification of P4 Switches with Reinforcement Learning. In Workshop
on Network Meets AI & ML.

[50] Radu Stoenescu, Dragos Dumitrescu, Matei Popovici, Lorina Negreanu, and
Costin Raiciu. 2018. Debugging P4 Programs with Vera. In ACM SIGCOMM.

[51] Hongyi Zeng, Peyman Kazemian, George Varghese, and Nick McKeown. 2012.
Automatic Test Packet Generation. In CoNEXT.

[52] Yu Zhou, Jun Bi, Tong Yang, Kai Gao, Cheng Zhang, Jiamin Cao, and Yangyang
Wang. 2018. KeySight: Troubleshooting Programmable Switches via Scalable
High-Coverage Behavior Tracking. In ICNP.

https://sdn.systemsapproach.org/

	Abstract
	1 Introduction
	2 Motivating Examples
	3 Validation with Assertions
	3.1 The DBVal language
	3.2 Example Assertions

	4 Assertion compilation and execution
	4.1 Tracking packet execution path
	4.2 Compiling assertions

	5 Implementation
	6 Evaluation
	6.1 Bug detection using DBVal
	6.2 Assertion language expressiveness
	6.3 Data-plane Overhead

	7 Related work
	8 Discussion
	9 Conclusion
	10 Acknowledgements
	References

