# Scaling IoT MUD Enforcement using Programmable Data Planes

Harish S A<sup>1</sup>, Suvrima Datta<sup>2</sup>, Hemanth Kothapalli<sup>1</sup>, Praveen Tammana<sup>1</sup>, Achmad Basuki<sup>3</sup>,

Kotaro Kataoka<sup>1</sup>, Selvakumar Manickam<sup>4</sup>, Venkanna U<sup>2</sup>, Yung-Wey Chong<sup>4</sup>



9<sup>th</sup> August 2022

**IEEE/IFIP Network Operations and Management Symposium 2023** 

# Internet of Things (IoT): Risks

Perpetrate attacks on critical Infrastructure



High competition: Less incentive for security

Patching vulnerabilities is difficult

Real time network based IoT security solution

<sup>1</sup>IoT Analytics, Market insights for Internet of Things: <u>State of IoT 2022</u>

Key drivers

## Manufacturer Usage Description (MUD)

MUD abstracts communication pattern of an IoT device to a MUD profile<sup>1</sup>

**Example MUD profile** 



<sup>1</sup>National Cybersecurity Center of Excellence (NCCoE) : <u>MUD related Resources</u>

# MUD enforcement



\*Combining MUD policies for IDS [IoT S&P'18] I Volumetric attack detection using MUD [SOSR'19] I SoftMUD [NIST, ICN]

# **Existing Approaches**



### Not suitable for large IoT networks

### In this work..

Question

How to scale MUD enforcement to support large IoT networks?

Key contribution

We design a **data plane primitive** to scale MUD enforcement using P4-based programmable switch

# Protocol Independent Switch Architecture (PISA)<sup>1</sup>



<sup>1</sup>P4.org <sup>2</sup>OpenNetworking.org: <u>link</u>

# Our approach in a nutshell



- We represent MUD rules as decision trees
- Translated to the switch match action pipeline







*Key implementation question* 

Can we design an efficient SRAM-based classification algorithm that runs entirely in the P4 data plane so that we can scale MUD enforcement to thousands of IoT devices?

Key Ideas

- 1. Partition and place MUD rules in SRAM
- 2. Decision tree representation of MUD rules

### Observations

**Observation 1:** MUD based ACL rules contain repetitions in header values (e.g., MAC address of the same IoT)

**Observation 2:** MUD ACL rules contain only exact or ternary matches (\*). Decision tree-based approach to avoid reencoding the repetitions

We emulate ternary matching (\*) using SRAM based operations

| Rule No. | sMAC              | protocol | sPort | dPort | srcIP     | dstIP            |
|----------|-------------------|----------|-------|-------|-----------|------------------|
| 1        | 0D:E8:49:46:8E:4D | 6        | *     | 8777  | *         | te.cc.com        |
| 2        | 0D:E8:49:46:8E:4D | 6        | *     | 80    | *         | www.e.org        |
| 3        | 0D:E8:49:46:8E:4D | 6        | *     | 80    | Ternary M | latch www.e1.org |
| :        | Exact Match       | es :     | :     | :     | :         | :                |

We develop an SRAM-based decision tree packet classification algorithm that runs entirely in the switch data plane.

### **Technical challenges**

### Challenges

**1.** Emulate '\*' behavior using purely SRAMbased operations

• A decision tree approach requires '\*' values to be unfurled.

### Our approach

Partition the MUD ACLs to reduce impact of '\*' values on the size of the ruleset

**2.** MUD rules of same device types are repeated.

 Same IoT device types have similar MUD profiles Identify and encode rules of an IoT device type only once in the decision tree

**3.** Map decision tree to the SRAM match action pipeline in the switch data plane

Introduce state values to drive packets through switch pipeline stages

### **Technical challenges**

### Challenges

**1.** Emulate '\*' behavior using purely SRAMbased operations

• A decision tree approach requires '\*' values to be unfurled.

### Our approach

Partition the MUD ACLs to reduce impact of '\*' values on the size of the ruleset

**2.** MUD rules of same device types are repeated.

 Same IoT device types have similar MUD profiles Identify and encode rules of an IoT device type only once in the decision tree

**3.** Map decision tree to the SRAM match action pipeline in the switch data plane

Introduce state values to drive packets through switch pipeline stages

13

# Challenge 1: Rule unfurling

**Challenge:** When using decision tree-based approach using SRAM based operations, unfurling wildcard values (\*) lead to rule explosion





#### **Modified Rules**

**Our approach:** Partition the MUD ACL ruleset to reduce the number of \* values and avoid explosion of added rules.

# Solution: Rule partitioning<sup>1</sup>

|                  | Rule | sMAC              | dMAC              | typEth | Proto | sPort | dPort | srcIP       | dstIP       |
|------------------|------|-------------------|-------------------|--------|-------|-------|-------|-------------|-------------|
| Forward Traffic  | 1    | 94:16:3e:3b:41:cf | *                 | 0x0800 | 6     | *     | 8899  | *           | 52.23.33.88 |
| Backward Traffic | 2    | *                 | 94:16:3e:3b:41:cf | 0x0800 | 6     | 8899  | *     | 52.23.33.88 | *           |
| Forward Traffic  | 3    | 94:16:3e:3b:41:cf | *                 | 0x0800 | 17    | *     | 53    | *           | *           |
| Backward Traffic | 4    | *                 | 94:16:3e:3b:41:cf | 0x0800 | 17    | 53    | *     | *           | *           |
| Forward Traffic  | 5    | 94:16:3e:3b:41:cf | *                 | 0x0800 | 6     | *     | 9207  | *           | *           |
| Backward Traffic | 6    | *                 | 94:16:3e:3b:41:cf | 0x0800 | 6     | 9207  | *     | *           | *           |
| Local Rules      | 7    | 94:16:3e:3b:41:cf | *                 | 0x0800 | 6     | 49153 | *     | *           | *           |
| Local Rules      | 8    | *                 | 94:16:3e:3b:41:cf | 0x0800 | 6     | *     | 49153 | *           | *           |

### **FT (Forward Traffic)**

Represents traffic originating from the device

Represented as a separate decision tree on SRAM

### **BT (Backward Traffic)**

Represents traffic incoming to the device

Represented as a separate decision tree on SRAM

### LCL (local rules)

Represents traffic that occur between the IoT devices

Stored without modification in the TCAM

### SRAM heavy but light on TCAM

VS

TCAM heavy approach

# Solution: Header partitioning

#### srcIP sMAC dMAC typEth Proto sPort dPort dstIP Rule 94:16:3e:3b:41:cf \* 0x0800 \* 52.23.33.88 1 6 8899 \* Partitioned \* 94:16:3e:3b:41:cf 0x0800 17 \* 53 \* \* 3 94:16:3e:3b:41:cf 0x0800 9207 \* \* \* 6 \* 5 **MUD ACL**

#### **Forward Traffic**

#### **Backward Traffic**

### **Approach:** Reduce these header fields

ruleset

#### dstIP Rule sMAC dMAC typEth Proto sPort dPort srcIP 94:16:3e:3b:41:cf \* 52.23.33.88 \* 0x0800 \* 2 6 8899 \* 94:16:3e:3b:41:cf 0x0800 17 53 \* \* \* 4 94:16:3e:3b:41:cf 6 \* 0x0800 9207 \* \* \* 6

#### **Forward Traffic**

| Rule | sMAC              | typEth | Proto | dPort | dstIP       |
|------|-------------------|--------|-------|-------|-------------|
| 1    | 94:16:3e:3b:41:cf | 0x0800 | 6     | 8899  | 52.23.33.88 |
| 3    | 94:16:3e:3b:41:cf | 0x0800 | 17    | 53    | *           |
| 5    | 94:16:3e:3b:41:cf | 0x0800 | 6     | 9207  | *           |

#### **Backward Traffic**

| Rule | dMAC              | typEth | Proto | sPort | srcIP       |
|------|-------------------|--------|-------|-------|-------------|
| 2    | 94:16:3e:3b:41:cf | 0x0800 | 6     | 8899  | 52.23.33.88 |
| 4    | 94:16:3e:3b:41:cf | 0x0800 | 17    | 53    | *           |
| 6    | 94:16:3e:3b:41:cf | 0x0800 | 6     | 9207  | *           |

## Solution: Wildcard optimization

- We summarize the patterns observed in the partitioned MUD ACL rules of all 28 IoT devices<sup>1</sup>.
- Only a few cases need to be unfurled

|                                         | Г      | orward I | raine (f I | )     |        |  |  |  |  |  |  |  |
|-----------------------------------------|--------|----------|------------|-------|--------|--|--|--|--|--|--|--|
| sMAC                                    | typEth | proto    | dPort      | dstIP | Action |  |  |  |  |  |  |  |
| E                                       | E      | 17       | 53         | *     | No     |  |  |  |  |  |  |  |
| E                                       | E      | 17       | 67         | *     | No     |  |  |  |  |  |  |  |
| E                                       | E      | 1        | *          | *     | No     |  |  |  |  |  |  |  |
| E                                       | E      | 1        | *          | Е     | No     |  |  |  |  |  |  |  |
| E                                       | *      | 2        | *          | E     | Yes    |  |  |  |  |  |  |  |
| E                                       | E      | 6        | *          | *     | Yes    |  |  |  |  |  |  |  |
| E                                       | E      | 17       | *          | *     | Yes    |  |  |  |  |  |  |  |
| Е                                       | E      | 17       | E          | *     | Yes    |  |  |  |  |  |  |  |
| E E 17 E * Yes<br>Backward Traffic (BT) |        |          |            |       |        |  |  |  |  |  |  |  |
| dMAC                                    | typEth | proto    | sPort      | srcIP | Action |  |  |  |  |  |  |  |
| E                                       | E      | 17       | 53         | *     | No     |  |  |  |  |  |  |  |
| E                                       | E      | 17       | 67         | *     | No     |  |  |  |  |  |  |  |
| E                                       | E      | 1        | *          | *     | No     |  |  |  |  |  |  |  |
| E                                       | E      | 1        | *          | E     | No     |  |  |  |  |  |  |  |
|                                         |        |          |            |       |        |  |  |  |  |  |  |  |
| E                                       | E      | 6        | * 🗸        | *     | Yes    |  |  |  |  |  |  |  |

Forward Traffic (FT)

### **Technical challenges**

### Challenges

**1.** Emulate '\*' behavior using purely SRAMbased operations

• A decision tree approach requires '\*' values to be unfurled.

### Our approach

Partition the MUD ACLs to reduce impact of '\*' values on the size of the ruleset

**2.** MUD rules of same device types are repeated.

 Same IoT device types have similar MUD profiles Identify and encode rules of an IoT device type only once in the decision tree

**3.** Map decision tree to the SRAM match action pipeline in the switch data plane

Introduce state values to drive packets through switch pipeline stages

18

### Challenge 2: Decision tree representation

### **Observation:** MUD-based ACLs have repeating values

IoT Device 1

#### **IoT Device 2**



Identify same IoT device types and avoid reencoding their rules

# Solution: Repoint the nodes

- Identify IoT device type from the MUD profile.
  - MUD URL in DHCP discover helps identify same IoT device type
- Encode rules of a device type only once.
  - Remove repeated subtree
  - Redirect new device node to existing subtree



### **Technical challenges**

### Challenges

**1.** Emulate '\*' behavior using purely SRAMbased operations

• A decision tree approach requires '\*' values to be unfurled.

### Our approach

Partition the MUD ACLs to reduce impact of '\*' values on the size of the ruleset

**2.** MUD rules of same device types are repeated.

 Same IoT device types have similar MUD profiles Identify and encode rules of an IoT device type only once in the decision tree

**3.** Map decision tree to the SRAM match action pipeline in the switch data plane

Introduce state values to drive packets through switch pipeline stages



Match + Action pipeline stages

### Solution: State values

Key Idea: Drive a packet through the stages using state values.

| Rule | sMAC              | typEth | Proto | dPort | dstIP       |  |  |  |  |  |  |  |  |  |
|------|-------------------|--------|-------|-------|-------------|--|--|--|--|--|--|--|--|--|
| 1    | 94:16:3e:3b:41:cf | 0x0800 | 6     | 8899  | 52.23.33.88 |  |  |  |  |  |  |  |  |  |
| 3    | 94:16:3e:3b:41:cf | 0x0800 | 17    | 53    | *           |  |  |  |  |  |  |  |  |  |
| 5    | 94:16:3e:3b:41:cf | 0x0800 | 6     | 9207  | *           |  |  |  |  |  |  |  |  |  |

**Forward Traffic** 

#### Match action table

| Rule<br>no. | sMAC_ typEth_<br>exact exact |    | typH<br>defa | Eth_<br>ault | proto_<br>exact |    | dPort_<br>exact |    |     | dPort_<br>default |    | dstIP_<br>exact |    |    | dstIP_<br>default |    |     |     |    |     |
|-------------|------------------------------|----|--------------|--------------|-----------------|----|-----------------|----|-----|-------------------|----|-----------------|----|----|-------------------|----|-----|-----|----|-----|
|             | val                          | ns | cs           | val          | ns              | cs | ns              | cs | val | ns                | cs | val             | ns | cs | ns                | cs | val | act | cs | act |
| 1           | :cf                          | 1  | 1            | C1           | 1               |    |                 | 1  | D1  | 1                 | 1  | F1              | 1  |    |                   | 1  | H1  | f   |    |     |
| 3           |                              |    |              |              |                 |    |                 | 1  | D2  | 2                 | 2  | F2              | 2  |    |                   |    |     |     | 2  | f   |
| 5           |                              |    |              |              |                 |    |                 |    |     |                   | 2  | F3              | 3  |    |                   |    |     |     | 3  | f   |



# Evaluation

How many IoT devices does our approach scale to?

### For 4480 devices

- Our approach
  - 114KB of SRAM
- TCAM based approach
  - 2.8 MB of TCAM

Up to 0.7 million devices per switch

Switch latency when scaling IoT devices?

- Min Latency: 364ns
- Max latency: 366ns

Negligible increase in latency when scaling Switch latency in purely TCAM approach

• Avg Latency: 290ns

Differs by ~75ns

# Summary and Future work

- We design a **data plane primitive** to scale MUD enforcement using P4-based programmable switch
- Using a decision tree-based design choice, we can scale well
- Future work:
  - Primitive to support varied network scenarios

# Scaling IoT MUD Enforcement using Programmable Data Planes

Harish S A<sup>1</sup>, Suvrima Datta<sup>2</sup>, Hemanth Kothapalli<sup>1</sup>, Praveen Tammana<sup>1</sup>, Achmad Basuki<sup>3</sup>,

Kotaro Kataoka<sup>1</sup>, Selvakumar Manickam<sup>4</sup>, Venkanna U<sup>2</sup>, Yung-Wey Chong<sup>4</sup>

Thank You

9<sup>th</sup> August 2022

**IEEE/IFIP Network Operations and Management Symposium 2023**