Accelerating PUF-based Authentication Protocols using Programmable Switch

Divya Pathak1Ranjitha K1Krishna Sai Modali2Praveen Tammana1Antony Franklin1Tejasvi Alladi2

IIT Hyderabad, India¹

9th May 2023

Technical Session 1.2 - SDN

IEEE/IFIP NOMS 2023

Internet of Things (IoT) security

Challenges:

Security Vulnerable to spoofing, tampering attacks

- Resource constraints
 Compute and energy
- Ultra-low Latency Many IoT applications require ultra-low latency (~1 msec)

• J.-P. Yaacoub, H. Noura, O. Salman, and A. Chehab, "Security analysis of drones systems: Attacks, limitations, and recommendations," Internet of Things, vol. 11, p. 100218, 2020.

• J.-Y. Lee, W.-C. Lin, and Y.-H. Huang, "A lightweight authentication protocol for internet of things," in 2014 International Symposium on Next-Generation Electronics (ISNE). IEEE, 2014, pp. 1–2.

• M. A. Siddiqi, H. Yu, and J. Joung, "5g ultra-reliable low-latency communication implementation challenges and operational issues with iot devices," Electronics, vol. 8, no. 9, p. 981, 2019. S. Gallenm"uller, J. Naab, I. Adam, and G. Carle, "5g urllc:

Internet of Things (IoT) Security

Challenges:

 Security
 Vulnerable to spoofing, tampering, and side channel attacks

Resource constraints
 Compute and energy

 Ultra-low Latency
 Many IoT applications require ultralow latency (~1 msec)

Authentication prevents unauthorised access
Ensures only legitimate IoT device gains access to the network

Existing cryptography-based authentication schemes

Authentication via encryption/decryption

Ex: Symmetric or Asymmetric key-based methods

Resource intensive

Secret keys stored on non-volatile memory (NVMs)

- A. Setyawan Sajim, "Open-source software-based sram-puf for secure data and key storage using off-the-shelf sram," 2018.
- M. N. I. Khan and S. Ghosh, "Information leakage attacks on emerging non-volatile memory and countermeasures," in Proceedings of the International Symposium on Low Power Electronics and Design, 2018, pp. 1–6.

Securing data session

Securing data session

Securing data session

Use key for secure data transfer

Physical Unclonable Functions

Physical Unclonable Functions (PUFs)

- Based on the **Challenge-Response (CR)** mechanism
- Lightweight
- Unclonable
 - Relies on inherent randomness while manufacturing
 - Two PUFs have different responses to the same challenge
- Unpredictable: Robust to ML attacks

Physical N-bit factors Challenge

Being lightweight, unclonable and unpredictable makes PUF-based security primitive a promising choice for IoT security

B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas, "Silicon physical random functions," in Proceedings of the 9th ACM Conference on Computer and Communications Security, 2002, pp. 148–160.

[•] T. McGrath, I. E. Bagci, Z. M. Wang, U. Roedig, and R. J. Young, "A puf taxonomy," Applied Physics Reviews, vol. 6, no. 1, p. 011303, 2019.

PUF-based authentication

Internet of Things (IoT) security

Challenges:

Security

Vulnerable to spoofing, tampering attacks

Resource constraints
 Compute and energy

 Ultra-low Latency
 Many IoT applications require ultralow latency (~1 msec)

PUF-based Authentication is robust to security attacks and resource friendly

Issues with the existing authentication protocols

End-to-end completion time

It takes more time to complete all four steps

Transmission Delays

- Multiple RTTs
- Multiple Hops

Hop-level Delays

- Packet copies
- Scheduling at DC/Edge server
- o I/O interrupts

Internet of Things (IoT) Security

Challenges:

- Security Vulnerable to spoofing, tampering attacks
- **Resource constraints** Compute and energy
- Ultra-low Latency (URLLC) Many IoT applications require ultra-low latency (~1 msec) as well as reliability
- Time budget to finish a transaction is < 1 millisecond ¹ ۲
- Enabling PUF-based Authentication for URLLC applications is challenging due to multiple RTTs ۲

M. A. Siddigi, H. Yu, and J. Joung, "5g ultra-reliable low-latency communication implementation challenges and operational issues with iot devices," Electronics, vol. 8, no. 9, p. 981, 2019. S. Gallenm"uller, J. Naab, I. Adam, and G. Carle, "5g urllc

Research question ?

How to build a secure and fast PUF-based authentication system?

Existing works and our approach

- Existing works lack comments on
 - Performance parameters like latency and throughput
 - $\,\circ\,$ Feasibility in 5G and edge computing environments

We focus on URLLC applications using edge computing

Protocol workflow (EP and AP)

Enrolment is assumed to happen in a secure offline manner

Protocol workflow (EP and AP)

EP and AP happen when IoT device wants to join a network

This paper: Offloads PUF-based authentication protocol to P4-based Tofino switch

ाई आई टी हैवराव

Background: High speed programmable switch

- Line speed packet processing at Tbps
- Programmable using P4 language

https://opennetworking.org/

<u>https://github.com/p4lang/tutorials</u>

Technical challenges imposed by P4-based switches

Limited switch memory

Switch memory (SRAM) only in the order of 100 MBs
How many IoT devices can we support?

Packets must be processed at line speed

Limited number of operations

Reduced [domain-specific] instruction set

Scalable

Reduces authentication time

Key contributions

Our work: Accelerating PUF-based authentication protocol on P4-based switch

- We address **technical challenges** imposed by P4-switches
- We implement a PUF-based authentication protocol prototype:
 - ${\rm \circ}\,\, {\rm Reduces}$ authentication time
 - \circ Scalable
 - \circ Secure
- We evaluate the prototype running on an actual switch

PUF-based authentication protocol on a P4-based switch

• U. Chatterjee, R. S. Chakraborty, and D. Mukhopadhyay, "A pufbased secure communication protocol for iot," ACM Transactions on Embedded Computing Systems (TECS), vol. 16, no. 3, pp. 1–25,

Key contributions

Our work: Accelerating PUF-based authentication protocol on P4-based switch

- We address **technical challenges** imposed by P4-switches
- We implement a PUF-based authentication protocol prototype:
- Reduce authentication time
- \circ Scalable
- o Secure
- We evaluate the prototype running on an actual switch

Addressing technical challenges

Limited switch memory

Switch memory (SRAM) only in the order of 100 MBs
How many IoT devices can we support?

MAT optimization

 Place per-loT CRPs across different MATs

Multi-stage MATs

Addressing technical challenges

A

- P4 code fits in a sequential switch pipeline
- We could achieve ultra-low latency requirement

Packets must be processed at line speed

- Limited number of operations
- Reduced [domain-specific] instruction set

Solution

Identify a dependent set of tasks to be executed sequentially

o T1: Retrieve unused CRPs

- **T2:** Generate random numbers and perform XORs, shifts and concatenation
- T3: Hash and store in stateful register to be compared during response processing

Addressing technical challenges

MAT Optimization + Data Dependency -

Key contributions

Our work: Accelerating PUF-based authentication protocol on programmable switch

- We address technical challenges imposed by P4-switches
- We implement a PUF-based authentication protocol prototype:
 - ${\rm \circ}\,\, {\rm Reduce}\,\, {\rm authentication}\,\, {\rm time}$
 - \circ Scalable
 - \circ Secure

• We evaluate the prototype running on an actual switch

Custom Authentication Header

Authentication request message

msgType	Unused	Unused	Unused	Unused	header aut	header auth_h		
1 byte	Auth	{ bit<8> m bit<32> (bit<64>	۱ bit<8> msgType; bit<32> challenge; bit<64> rndNumber:					
msgType	challenge	rndNumber	Unused	switchTime	bit<32>	bit<32> Hash;		
1 byte	4 bytes	6 bytes		4 bytes	bit<32> :	bit<32> switchTime; }		
Authentication response message					MsgTyj	oe Value		
msgType	Unused	Unused	Hash	Unused	Reque	st 0x00		
1 bvte		1	4 bytes		Challen	ge 0x01		
,	Authentication acknowledgement message					se 0x02		
					Ack	0x03		
msgType	Unused	Unused	Unused	switchTime				
1 byte				4 bytes				

Custom header defined to implement authentication phase

To study the offloading benefits, we implement PUF-Verifier logic on:

- Intel Tofino switch Wedge100BF-32x Tofino
 O PUF-Verifier using P4-16
- General Purpose x86 based CPU Intel(R) Core(TM) i9-7900X 10-core 3.3 GHz
 PUF-Verifier using UDP socket program

IoT authentication messages are emulated using UDP socket program

Key contributions

Our work: Accelerating PUF-based authentication protocol on a programmable switch

- We address **technical challenges** imposed by P4-switches
- We implement a PUF-based authentication protocol prototype:
- Reduce authentication time
- \circ Scalable
- o Secure
- We evaluate the prototype running on an actual switch

Experimental setup

Evaluation

Metrics 1. Authentication completion time • End-to-end authentication latency	Understand performance implications and resource consumption Evaluation setup Host-Switch Host-Host 		
2. Resource consumption SRAM usage For more details on the metrics, do check out our paper	And for variable PUF response sizes 64-bits 128-bits 256-bits 		

End-to-end authentication latency

We sent 10K authentication requests to evaluate end-to-end authentication latency

For Switch-based Verifier with PUF Response size:
(1) 64-bit -- 99% of the requests < 0.25 msec
(2) 256-bits -- 99% of the requests < 0.4 msec

Switch-based verifier significantly reduces the time taken to authenticate an IoT device

Resource (SRAM) consumption

Assume we wish to support 100 CRPs per IoT

We can scale up or scale down the number of IoT devices supported by modifying the number of CRPs per IoT device

Summary

- Need for Accelerating PUF-based Authentication Protocols
- Offloaded the PUF verifier to the Tofino switch
- Average authentication latency improvement for switch-based verifier by 100-472%
- Scales up to hundreds of thousands of IoT devices

