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Abstract—Many IoT use cases have ultra-low latency and
strong security requirements. But achieving both simultaneously
is challenging. In this paper, as a use case, we consider the
authentication of IoT devices for every transaction and develop
a fast and secure authentication protocol. Our key idea is to
leverage highly secure Physically Unclonable Functions (PUFs)
and high-speed programmable switch and offload PUF-based
authentication protocol to the switch. By doing so, it enables
authentication of every transaction at network speed. In this
paper, we demonstrate the feasibility of our idea by offloading
the authentication protocol to a programmable switch with Tofino
chip. Our preliminary experiments show that protocol offloading
reduces authentication latency by 2-4 times and scales to a few
hundred thousand IoT devices.

I. INTRODUCTION

IoT applications have been deployed around the world at

a rapid pace with use cases in the domains of industrial

automation, intelligent transportation, telemedicine, virtual re-

ality, and smart cities. A category of IoT devices is vulnerable

to various attacks [1] that lead to security and privacy issues

(e.g., leakage of sensitive data, tampering, spoofing). To defend

against such attacks, it is essential to deploy an authentication

system that ensures only legitimate devices gain access to the

network.

For session authentication in today’s applications, classical

cryptography-based techniques [2]–[4] are widely used. These

techniques rely on a secret key, assumed to be stored perma-

nently on the device or battery-backed storage and is unknown

to an adversary. But in practice, the mechanisms used to store

the key on the device memory (e.g., non-volatile memory)

are subjected to physical attacks [5], [6]. An attacker can use

techniques to clone memory (e.g., micro probing) or may use

side-channel information to retrieve any information about the

key leading to a security breach.

Instead of using a secret key stored in permanent storage, an

alternative approach is to generate a key securely whenever an

IoT device tries to establish a data session to a remote entity

followed by using the key to secure the session. To realize this,

Physically Unclonable Function (PUF) hardware-based [7],

[8] device authentication and key generation schemes are

promising. More specifically, PUFs operate on a challenge-

!"#$%&'()&*

+,-$

./012/0&

+,-$'&0(3(&0

0455(56$/7$/5$

&16&$)8"41

9400&57:$;47<&57()/7("5$=0"7")"8$>&**/6&$=/7<

#<(*$=/=&0:$;47<&57()/7("5$

=0"7")"8$>&**/6&$=/7<

9?+* %/7/@/*& 9?+* (5$

*2(7)<$)/)<&

Fig. 1. PUF-based authentication

response mechanism, that is, given an input stimulus called

a challenge, it generates an output called a response. This

response depends on physical factors like supply threshold

voltage, temperature, gate level delay, power-on state, and

many other physical characteristics. PUFs are unclonable

mainly because even though the manufacturing process is

the same among different Integrated Circuits (IC), each IC

differs from the other because of variations present during the

manufacturing process.

In short, to secure data sessions using PUF-generated keys,

the IoT device and the destination it wants to speak to have

to agree on a key. This is followed by using the key (perhaps

in combination with other secret information) to secure the

session. However, the key-sharing process adds an extra step:

how to ensure that the key is indeed shared with the intended

IoT device? This requires authentication of the IoT device

initiating the session.

For authentication, many PUF-based authentication pro-

tocols [9]–[15] have been proposed. Fig. 1 summarizes the

key idea behind these protocols. To be specific, consider the

authentication functionality (i.e., PUF verifier logic) running

on a general-purpose CPU server at the edge. Before an

IoT can access resources (i.e., data, compute, network), (a)

it sends an authentication request to the server, (b) then the

edge server issues a challenge to the IoT, (c) followed by a

response message from the IoT to the server, and (d) finally the

verifier validates the response and sends an acknowledgement

to the IoT device. We define end-to-end authentication request

completion time as the time to complete these four steps. It

includes (1) multiple RTTs and (2) packet copies and I/O

interrupts at the server, especially while forwarding packets

from the network interface to the hypervisor layer [16], [17]



to the application layer to PUF verifier.

Enabling PUF-based authentication in Ultra-reliable low

latency communications (URLLC) applications is challenging

because of additional delays (transmission, propagation, and

processing) introduced by the protocol. Especially, in URLLC

applications where latency is crucial as the time budget to

finish a transaction (i.e., authentication followed by data trans-

mission) is expected to be less than 1 millisecond [18]–[20].

Some example communication scenarios are (1) machine-

to-network-to-machine in industrial automation (e.g., sensor-

controller-actuator [21]), and (2) vehicle-to-network-to-vehicle

in autonomous navigation (e.g., drone-based delivery [18]).

The existing work [9]–[15] mainly focus on the security

analysis (e.g., security proofs) of proposed PUF-based authen-

tication protocols, there are no insights into other important

performance parameters such as latency, throughput, and their

feasibility in 5G and edge computing environments.

In this paper , we take a step towards building a secure and

fast PUF-based authentication system by leveraging features

offered by the P4-based high-speed programmable switch data

plane (e.g., switch with Tofino chip [22]). Many recent works

show performance benefits by offloading latency-sensitive

tasks [21], [23]–[26] from CPUs to programmable switches.

For instance, [21], [25], [26] improve sensor-actuator com-

munication delays by offloading control actions from the

industrial controller to a programmable switch. Inspired by

these works, we offload an existing PUF-based authentication

protocol to a high-speed programmable switch and reduce

authentication completion time.

In this paper, we consider a typical private edge setup where

IoT devices communicate with URLLC applications deployed

at the nearest mobile-access edge compute (MEC). We assume

that both IoT devices and the network connecting the devices

to the edge cloud are under a single administrative domain

(e.g., industrial automation) and every transaction initiated

by an IoT device should be authenticated before the data

transmission starts.

We focus on three objectives: (1) reduce authentication com-

pletion time; (2) scale the offloaded authentication protocol to

support a reasonably large number of IoT devices (hundreds

of thousands of devices); and (3) secure the offloaded protocol

from various attacks. However, programmable switches have

limited memory (100’s of MBs [22]) and allow a small set

of per-packet operations (e.g., hash, arithmetic, logical) with a

small number of per-packet memory accesses (1-2 per pipeline

stage). These constraints make it challenging to achieve these

objectives. We address this challenge by carefully placing

per-packet operations essential for implementing and secur-

ing the PUF-based authentication protocol. Also, to support

the authentication for many IoT devices, we carefully split

challenge-response pairs across multiple stages in the switch

pipeline. Together, this approach significantly improves the

number of IoT devices supported at a given time.

The main contributions of this paper are as follows:

• We carefully address the resource constraints imposed

by P4-based programmable switches and implement a
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Fig. 2. PUF-based authentication protocol workflow

PUF-based authentication protocol prototype that sup-

ports authentication for hundreds of thousands of IoT de-

vices. Code is available at https://github.com/networked-

systems-iith/PUFAuth

• We also conduct a security analysis of the authentication

protocol offloaded to the switch.

• We evaluate the prototype running on a real switch. We

observe that authentication time is improved by 100-

472% compared to the time taken by the protocol running

on a general-purpose CPU server.

II. MOTIVATION

PUF-based authentication protocol. Fig. 2 shows an exist-

ing PUF-based IoT device authentication protocol. The PUF-

verifier logic is running on a server and IoT devices are

equipped with PUF hardware. During the enrollment phase,

numerous Challenge-Response Pairs (CRPs) of each IoT de-

vice are produced in advance and securely stored in the PUF-

verifier database. This phase is executed once for each device.

During the authentication phase, the verifier issues a challenge

to an IoT device, followed by a response generated by the IoT

device’s PUF. The authentication is successful only if the IoT

device’s response matches the response at the verifier.

Transaction-level authentication. Consider a delay-sensitive

transaction where sensor data from a PUF-equipped IoT

device [27] is sent to a centralized industrial controller which

analyzes the data and sends a control action to an actuator (the

same or another IoT device) [21]. Assuming the controller

is handling transactions of a few tens of thousands of IoT

devices with one transaction per second from each device,

this translates to a few tens of thousands of transactions per

second. If such transactions have to be authenticated using

PUF-based authentication protocol, then the authentication of

each transaction by a central controller before accepting the

data introduces additional delays (i.e., at least two RTTs,

multiple packet copies, and I/O operations at the edge server

from NIC to hypervisor layer to VM). This approach not only

increases the authentication time because of many hops but

also needs more computing to scale to such a huge number of

transactions.

Thus, reducing authentication latency enables us to meet

transaction time budgets (e.g., 1ms). But satisfying either

low latency or security requirements may not be hard, but
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1 byte 4 bytes

MsgType Value

Request 0x00

Challenge 0x01

Response 0x02

Ack 0x03

Authentication request message

Authentication challenge message

Authentication response message

msgType Unused Unused Unused Unused

1 byte

1 byte

header auth_h

{

bit<8> msgType;

bit<32> challenge;

bit<64> rndNumber;

bit<32> Hash;

bit<32> switchTime;

}

Authentication acknowledgement message

msgType Unused Unused Unused switchTime

1 byte

msgType challenge rndNumber Unused switchTime

6 bytes 4 bytes

msgType Unused Unused Hash Unused

4 bytes

4 bytes

Fig. 4. Authentication protocol header and message formats

achieving both simultaneously is challenging. This motivates

the need for accelerating PUF-based authentication protocols

such that the transaction can be completed fast.

III. ACCELARATION OF AUTHENTICATION PROTOCOL

We propose to offload PUF-verifier logic running on a

general-purpose CPU to a programmable switch. We aim to

meet the following objectives while offloading the authentica-

tion functionality to the programmable switch.

Reduce authentication latency. We aim to reduce the time

to authenticate IoT device before initiating data transfer to a

remote server.

Scalability. We aim to support the authentication for tens of

thousands of IoT devices while satisfying the memory and

processing constraints imposed by the programmable switch.

Security. We aim to ensure that the communication between

IoT devices and the PUF-verifier running on the switch is

secure and robust against various security attacks. This is

challenging because of limited hash-based primitives and per-

packet operations allowed by the programmable switch.

A. Protocol workflow

In the literature, there are many variants of PUF-based

authentication protocols [9], [12], [15]. We have chosen an

authentication protocol from the work done by Chattergee

et. al. [11] to demonstrate its implementation feasibility on

a programmable switch. Fig. 2 shows the workflow of the

authentication protocol that we offload to the programmable

switch. Fig. 3 summarizes our approach. PUF-based authenti-

cation primarily comprises two phases: the enrollment phase

and the authentication phase.
1) Enrollment phase: We assume that IoT devices are

equipped with PUF hardware (either in-built or plug-

gable [27]). Before deploying an IoT device, Challenge-

Response Pairs (CRPs) of associated PUF hardware are either

generated or provided by the IoT device vendor. We consider

strong PUFs [28], [29] capable of generating a very large

set of CRPs per IoT device. The retrieved CRPs are stored

in a central database (CRP-DB) maintained at an edge cloud

and then loaded to switch memory (CRP-Cache) by the SDN

controller. The IoT device enrollment phase is assumed to

happen in a secure offline manner.
2) Authentication phase: In this phase, IoT device gets

authenticated according to the PUF-based authentication pro-

tocol shown in Fig. 2. To implement this phase, as shown

in Fig. 4, we define protocol header (auth h) to support four

types of protocol messages: Request, Challenge, Response,

and Acknowledgement. An authentication message type is

identified using MsgType field.

Request processing at the switch. On packet arrival, the

switch ingress parser extracts the authentication header, checks

whether the packet is a request message or a response mes-

sage. If the message is an authentication request, the switch

retrieves a challenge-response pair (challenge C and response

R) associated with that IoT from the switch CRP-Cache. This

is followed by computing a random number (RN
′

) by xoring

response (R) with another random number (RN ). Also, △1,

the hash of R and RN is stored in switch stateful memory.

Finally, a challenge packet with C and RN
′

is sent to the IoT.

Challenge processing at IoT. From the challenge sent by

the switch, the IoT device gets the corresponding response R

from its PUF hardware. It also retrieves RN from RN
′

and

R followed by computing hash (△2) of RN and R. Finally,

the IoT device prepares a response packet with △2 and sends

it to the switch.

Response processing at the switch. On receiving the response

packet, the switch retrieves the hash value (△1) stored previ-

ously in the stateful memory and compares △1 with the hash

value (△2) in the response packet. If both are the same, then

the switch will send an acknowledgment message to the IoT

to indicate that the IoT is successfully authenticated.

Acknowledgement processing at IoT. On receiving an au-

thentication acknowledgment message, the IoT device contin-

ues with the next steps in data transmission.

B. Technical challenges

1) Scaling to a large number of IoT devices: To meet

our objectives mentioned earlier, we need to perform the

operations involved in the authentication protocol under the

memory and computation constraints imposed by the switch.

In this section, we present our approach that can scale to

support tens of thousands of IoT devices.

As shown in Fig. 5(a), on receiving authentication request

from an IoT device, say X , corresponding authentication
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challenge packet is prepared and send to the IoT device. To

do so, we need to take care of three major tasks which have

to be executed sequentially due to data dependencies. The

tasks are: (T1) retrieve currently unused CRP from the list

of IoT device’s CRPs; (T2) generate a random number and

do operations like xor, bitwise shift, and concatenation; and

(T3) compute a hash value (△1) and store it in a stateful

register which will be retrieved and compared with (△2) in

authentication response from the IoT device.

For T1, we program MATs such that each table entry

matches on two header fields: (1) IoT device MAC address

(srcMAC) to uniquely identify the IoT device, and (2) An

index (idx) ranging from 1 to M pointing to the currently

unused CRP from the list of IoT device’s CRPs. Also, idx

is incremented by one and put it back into the unused CRP

Index Register, so that subsequent authentication requests

know which are unused CRPs. To scale this approach to more

IoT devices, we place per-IoT CRPs across multiple MATs

in different stages in the switch pipeline. This allows using

per-stage SRAM memory. We reserve the first pipeline stage

for idx calculation and the remaining stages till the third last

stage contain exact match-action tables with M CRP entries

for each of N IoT devices. The second last stage is used to

perform T2 and the last stage is used to perform T3.

This way, we implement the authentication protocol by

leveraging SRAM available across multiple stages in the

switch pipeline. Using tofino1 [22] switch, this approach

scales to roughly 468K IoT devices per pipeline when M=100

CRPs per IoT and it is 884K IoT devices per pipeline using

tofino2 [30]. The details on the resource consumption and

how we arrived at this number are discussed in detail in the

evaluation section V-E.

a) Discussion and future work: Use switch memory

efficiently. Due to resource constraints, it is practically impos-

sible to maintain all CRPs at the central database (CRP-DB) in

switch memory (CRP-cache). When the CRPs of a particular

IoT device in the CRP-cache get used up, the controller can

replenish CRP-cache with a new set of CRPs. To achieve this,

we can use a per-IoT counter to keep track of the number of

used CRPs in CRP-cache. When this counter crosses a user-

defined threshold, the switch can be programmed to send a

notification to the controller which updates the CRP-cache

with a new set of CRPs. However, if CRPs are exhausted

before the update then the switch can be programmed to send

authentication requests to a backup PUF-verifier running on

a server. We expect the performance implication (i.e., latency

increase) would be minimal if the controller reacts fast to the

switch notification. As part of our future work, we plan to

extend the current offloaded protocol with this approach and

evaluate the impact on performance for different workloads.

Scaling to more IoT devices. To support an even larger

number of IoT devices, one can incorporate fast path and

slow path architecture. In this architecture, a copy of the first

request packet from an IoT device is sent to a centralized

SDN controller and the original request is sent to a PUF-

verifier running on a server (slow path). Next, the controller

installs the IoT’s CRPs on the switch such that subsequent

requests from the same IoT device are processed entirely in

the data plane (i.e., fast path). This approach also requires an

efficient eviction policy (for a better hit rate) when there is

no space left in the switch memory. We foresee the current

offloaded protocol can be extended with fast path and slow

path architecture.

Choosing target network device. We implement the pro-

posed approach on Tofino programmable switch because of

its accessibility, open documentation, and community sup-

port. Our approach can be extended to other programmable

switches such as Intel FlexPipe [31], Texas Instruments’s

Reconfigurable Match Tables (RMTs) [32], and Cavium XPli-

ant switches [33]. Offloading to host-based solutions like

DPDK/XDP/SmartNICs scale well and are more flexible

compared to switch-based solutions. But this comes at the

cost of an increase in latency (due to additional hops in

the network as shown in Fig. 1 and management overheads

(due to additional server infrastructure). In general, there is a

tradeoff among scalability, latency, security, and management



overheads – achieving one of them is not hard, but achieving

all simultaneously is challenging.

2) Security analysis: In this section, we first discuss a

vulnerability considering the switch target limitations with

respect to support for a secure hash function. We then define

an attack model and analyze the robustness of the offloaded

protocol against various security attacks.

a) Target specific vulnerability: Different P4 data planes

support different hash functions offering varying levels of

security. In this paper, we use Intel’s Tofino [22] switch target

which supports by default only CRC-32 hash which is proven

to be reversible [34] and subject to a collision attack. Thus,

one can guess the data which was used to generate the CRC-32

hash. Also, by launching a brute force attack, one can guess the

random numbers used in the communication and the responses.

To combat such vulnerability, we need to use a larger PUF

response i.e., greater than 128-bit length is considered to be

secure against brute force attacks with the current available

compute resources.

One could also build on top of recent work, SipHash [35]

that successfully implemented a more secure hash-based mes-

sage authentication code (HMAC) on Tofino with a graceful

impact on packet-processing latency. Another option is to

program FPGA hardware available on the next generation of

Tofino [36] and implement secure hash functions like SHA

and export it using P4 externs. We plan to take this as future

work.

b) Attack model: Consider a threat model containing

PUF-verifier, an IoT device, and an adversary. The PUF-

verifier and the IoT devices are secure and trusted, that is, the

adversary cannot access the PUF embedded in the IoT device

and the CRP database stored at the PUF-verifier. The PUF

under consideration is robust, unclonable, unpredictable, and

tamper-proof [37]. The adversary (Man-in-the-middle(MITM)

attacker) has access to the communication medium between

the PUF-verifier and the IoT device. The adversary can modify,

delay, or drop messages exchanged between the PUF-verifier

and the IoT device. Now we analyze the robustness of the

offloaded protocol against well know attacks.

Replay attack. Assume that the adversary sniff and captures

all packets exchanged during an authentication session with

the goal to replay it later. If we carefully observe, the au-

thentication challenge messages C1 cannot be repeated in

subsequent authentication sessions since we make use of a

strong PUF prototype. Furthermore, the use of random number

RN ′ generated using R, and another random number RN as

shown in Fig. 2, makes it inherently hard to launch replay

attacks.

Tampering attack. Authentication messages are sent in plain

text, which can be modified by an active Man-in-the-middle

attacker sitting in between the PUF-verifier and the IoT device.

Doing so will cause the IoT device not to be authenticated

which may cause a denial of service to the IoT device.

Spoofing attack. The attacker will not be able to spoof a

legitimate IoT device because to spoof an IoT device, the

attacker needs access to the response corresponding to the

challenge sent by the PUF-verifier. As the PUF embedded

in the IoT devices cannot be accessed either remotely or

physically by an attacker nor the PUF can be replicated,

the only possibility of an attacker getting access to the PUF

response is by trying a brute force attack on the exchanged

random numbers and hash. Since we are using a response size

of 128 bits or longer, this will not be possible. Therefore, our

system is secure against spoofing attacks.

Denial of service attack. Our system is robust towards

denial of service attack because the PUF-verifier process only

the requests from already registered legitimate IoT devices.

State information is stored per IoT device. Since we process

only requests from legitimate registered IoT devices, for N

registered IoT devices, P4-verifier will have at most N states

irrespective of the number of authentication requests received.

Thus the verifier continues to serve the IoT devices without

any service disruption.

IV. IMPLEMENTATION

This section presents the implementation details of the PUF-

verifier. We implement and execute the PUF-verifier logic on

two targets: (1) Intel Tofino switch and (2) General purpose

x86-based CPU. For the Tofino switch (Wedge100BF-32X),

we implement the verifier logic in P4-16 [38] language in

617 lines of code. A snippet of the same is shown in Fig. 6.

We store the CRPs in Match-Action Tables (MATs) as shown

in Fig. 5(a)

On the x86 machine, we implement PUF-verifier logic

using a multi-threaded User Datagram (UDP) socket program

written in C++11 and the program contains 286 lines of

code. We stored the CRPs in an array of struct type to

access the CRPs in constant time. For calculating CRC32

hash, we use boost [39], a C++11 library to implement CRC

hashes. To implement threading, we used pthread library [40].

To emulate IoT authentication requests, we generate custom

requests and send them using a multi-threaded User Datagram

(UDP) socket program written in C++11 and the program

contains a total of 255 lines of code.

V. EVALUATION

Our main goal for evaluation is to study 1) the latency and

throughput improvements obtained by offloading the verifier

logic to a programmable switch and 2) the overheads incurred

in terms of data plane resources for executing the verifier logic

in the data plane.

A. Experimental setup

To study the offloading benefits, we executed our experi-

ments on two setups as shown in Fig. 7 and Fig. 8. In both

setups, we have a host machine running an Ubuntu 18.04.6

LTS OS (on the left) sending authentication requests to the

PUF verifier. The host machine is equipped with a Ryzen9

8-core 3.8 GHz CPU and dual-port 100 Gbps Netronome

smartNICs [41] (used as regular network interface cards).



MATs and registers

control Ingress {
apply {
if (hdr.auth.isValid()){
if(hdr.auth.msgType == 0){
idx = unused_crp.rw(hash(srcMac))
// Matching MATs on hdr.srcMac and idx till we
find IoT
if(CRP_MAT1.apply.hit()) {
}else{
if(CRP_MAT2.apply.hit()) ){
...
}}
RN = Random number generator()
Hash = CRC32(Response, RN)
reg_index = CRC32(hdr.ethernet.srcMac)
Register write Hash to index reg_index
send authentication challenge
}
}
else if(hdr.auth.msgType == 2){
recievedHash = hdr.auth.Hash;
reg_index = CRC32(hdr.ethernet.srcMac)
Hash = Register read Hash with index reg_index
if( recievedHash == Hash ){
// send authentication ack }
else {
// drop packet}}}

table CRP_MAT1 {
key={hdr.ethernet.srcMac:exact;
idx:exact}
actions ={retrieveCRPs,
drop}
default_action = drop()}

table CRP_MAT2 {
key={hdr.ethernet.srcMac:exact;
idx:exact}
actions ={retrieveCRPs,
drop}
default_action = drop()}
:
:
table CRP_MATx {
key={hdr.ethernet.srcMac:exact;
idx:exact}
actions ={retrieveCRPs,
drop}
default_action = drop()}

register unused_crp(MAX_IoT)

Actions

action retrieveCRPs(...){
// Get Challenge, Response
}

action drop(){
// drop the packet
}

RegisterAction rw(out idx1)
{
idx1 = idx // Read
idx = idx + 1 // Write
} 

Ingress

Fig. 6. P4-16 code snippet of PUF-verifier logic
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Host-Switch. This setup (Fig. 7) comprises of the host ma-

chine connected to a Wedge100BF-32x Tofino [22] switch

running an Ubuntu 18.04.6 LTS. One of the switch ports is

connected to the host (left). The switch runs PUF verifier

program( Fig. 6) written in P4 language.

Host-Host. The setup in Fig. 8 comprises two host machines,

the one on the left issues authentication requests to the PUF

verifier running on the other machine. We execute the PUF

verifier on a machine running an Ubuntu 18.04.6 LTS OS,

equipped with Intel(R) Core(TM) i9-7900X 10-core 3.3 GHz

CPU and 100 Gbps Netronome smartNIC.

Experiments. We perform experiments by sending authenti-

cation requests to the PUF verifier. As discussed in section

III-B2, we use weak hash CRC32 in the implementation due to

Tofino constraints. We want to understand the performance im-

plications and resource overheads as response size increases.

For this, we consider different PUF response sizes of 64, 128,

and 256-bits. We fix the PUF challenge size to 32-bit. In

all experiments, we set the CRPs per IoT to 500. For each

experiment, we captured pcap traces and analyzed the end-

to-end latency, per-packet processing latency, and throughput

variation.

B. End-to-end latency

To study the end-to-end latency, the host (left) generates

10K authentication requests. Fig. 9(a) shows CDF of au-

thentication latency, that is, time to finish all steps in Fig. 2

for 64 and 256-bit PUF responses. For 64-bit PUF response,

we observe 99% of the requests are finished in less than

0.25 milliseconds when the verifier is running on the switch

(switch-based verifier) whereas it is up to 0.55 milliseconds

when the verifier is running on the host (host-based verifier).

Similarly, for 256-bit PUF response, 99% of the requests are

finished in less than 0.4 milliseconds for the switch-based

verifier whereas it is up to 1 millisecond for the host-based

verifier.

It is also notable that the latency increase due to variation

in PUF response size is much lesser (0.15ms) for the switch-

based verifier when compared to the host-based verifier where

the latency is increased to approximately 0.45ms. For the

switch-based verifier, we notice that the increase in the latency

is mainly because of the bottleneck at the sender. This is

based on the observation that the packet-processing latency at

the switch remains majorly unaffected though PUF response

size increases (see Fig. 9(b)). On the other hand, for the host-

based verifier, the packet-processing latency increased by 350

microseconds (see Fig. 9(c)). This indicates minimal perfor-

mance implications with enhanced security for the switch-

based verifier.

Furthermore, Fig. 10 shows the average latency gains of the

switch-based verifier over the host-based verifier. We observe

that as the size of response bits increases, the switch-based

verifier gives gains from 100% to 472%. From the results, we



infer that the switch-based verifier significantly reduces the

time taken to authenticate an IoT device.

C. Per-packet processing latency

We also study the impact of the increase in PUF response

size on packet-processing latency at a hop level. That is,

we measure the time the switch-based verifier or host-based

verifier has taken to process two types of packets: authentica-

tion request and response. Note that a challenge is generated

after processing the authentication request packet, and an

acknowledgment is generated after validating the response

packet. We send 10K authentication requests to both the

switch-based verifier and the host-based verifier and measured

the time to process these two types of packets.

To measure per-packet latency at the switch, we use

global tstamp intrinsic metadata available at both the ingress

and egress pipeline. We compute the time difference between

ingress and egress global timestamps and tag this information

in the packet. For this, we add a custom header field named as

switchTime (see Fig. 4). In the host-based verifier, we consider

the time elapsed between receiving and sending socket calls

at the host.

From Fig. 9(b) and Fig. 9(c), we observe that as the size of

response bits increases, the per-packet latency of the switch

is increased by only 1% whereas it is up to 150% for the

host-based verifier. This is because as response size increases,

the verifier has to perform more operations such as CRC32

hashing, XORing, ORing, and random number generation

(see Fig. 2). For instance, CRC32 hashing on a host-based

verifier for a 256-bit long value takes more CPU cycles than

what is required for a 64-bit response. On the other hand,

the programmable switch is designed to execute a small set

of operations with minimal-to-no impact on line rates, thus

the increase in response size has a minimal-to-zero effect

on switch-based verifier performance – compared to 64-bit

response size, we observe processing latency is increased by

only 4 nanoseconds for 128-bit response size.

D. Throughput

We measure throughput or authentication rate in terms

of the number of requests authenticated per second by a

verifier. From Fig. 11, we observe there is 53-81% gain in

authentication rate when the PUF verifier is offloaded to the

switch. We notice that the gains go down as response size

increases. We highlight that this is not because of more load

on the switch, instead, it is due to the bottleneck at the sender

as it is not able to generate more requests. More specifically,

as the size of the response increases, it puts more load not only

on the PUF verifier but also on the sender. That is, compared to

the 64-bit response, for 256-bit, the sender has to perform xor

and generate hash on more bits. Also, because of the same

reason, in the host-based verifier, we did not observe much

difference in throughput as the size of the response increases.

E. Scalability

In this section, we evaluate the maximum number of CRPs

that the switch can support given that the Wedge100BF-32x

Tofino switch has a fixed-length pipeline with fixed hardware

resources. We use MATs defined as static tables at compile

time to store CRPs. Depending on the type of match, the

compiler allocates either SRAM or TCAM blocks to these

MAT units for the exact or ternary matches, respectively. In

our implementation, we use MATs for the exact match and

retrieve CRP. We evaluate our system scalability by finding

the maximum number of CRPs the switch can support given

its available SRAM resources. We did this by exhausting the

SRAM available across multiple stages. For a 64-bit response

size, the switch can support a total of 46 million CRPs with an

average SRAM utilization of 82%. Average SRAM utilization

is less than 100% because few of the pipeline stages are used

for stateful registers and for other operations like hashing

and concatenation. SRAM utilization is about 96.3% for the

stages where MATs were placed. Assuming that we wish to

support 100 CRPs per IoT device, our system can support

468K IoT devices concurrently. We can scale up or scale down

the number of IoT devices supported by modifying the number

of CRPs per IoT device. Fig. 12 shows the switch SRAM

utilization and number of IoT devices supported (assuming

100 CRPs/IoT) for 64, 128 and 256-bit response.

Each transaction consumes one CRP, thus total memory

consumed per transaction is 16B, 24B, and 40B for 64-

bit, 128-bit, and 256-bit response sizes, respectively. And

per-transaction stateful register memory required to store a

challenge’s hash is 4B.

VI. RELATED WORK

Crypto-based authentication. Most of the existing work uses

crypto-based symmetric/asymmetric techniques [4] for authen-

ticating IoT devices. [42], [43] propose a symmetric key-based

authentication mechanism where they use AES to generate a

secret key and the key is shared between the IoT device and the

authentication server. [44] proposes asymmetric cryptography-

based authentication where public key infrastructure (PKI) is

used. Along with the PKI framework, Transport Layer Secu-

rity [45] (TLS/SSL) and Datagram Transport Layer Security

(DTLS) are extensively used for mutual authentication of

IoT devices [46], [47]. In contrast, we focus on PUF-based

authentication protocols.

PUF-based authentication. Many works [5], [9], [9]–[11],

[11]–[15], [48] advocate PUFs to be used for mutual authen-

tication of both devices to device and device to a server. They

use either strong PUFs, weak PUFs with crypto-techniques,

or a combination of strong and weak PUFs. [49] proposes

a lightweight authentication mechanism that uses 12% lesser

memory compared to the traditional DTLS-based authentica-

tion. In [50], PUF-based authentication is extended to use

a certificate-less, fast, TLS authentication. [48] proposes a

combination of strong arbiter PUF and weak SRAM PUF

for authentication. The existing PUF-based authentication ap-

proaches focus mainly on the security aspects of IoT. In

contrast, we focus on the performance aspects of IoT-based

latency-critical applications without compromising security.
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P4-based authentication. [51], [52] leverage programmable

data planes to authenticate hosts in a network. These works

are different from ours as we focus more on offloading PUF-

based authentication protocol to a switch. Compared to our

preliminary work [53], this work provides a more detailed

design, implementation, and evaluation in terms of throughput

and latency.

IoT and P4. Cloud-based solutions for industrial processes

are simple to manage and flexible, yet they cannot satisfy

URLLC requirements of real-time industrial use cases like

robot arms, conveyor belts, etc. With the use of P4 switches,

in-network computing has gained a lot of attention. [54] shows

how cloud-robotics use cases can be accelerated if a whole

Size of 

Response

(in bits)

TNA1 TNA2

SRAM

(in %)

No. of IoT 

devices 

supported 

(per pipeline)

SRAM

(in %)

No. of IoT 

devices 

supported

(per pipeline)

64 82 468K 82 884K

128 75.3 360K 75.3 680K

256 66 180K 66 340K

Fig. 12. Switch SRAM utilization and IoT devices supported per pipeline

as response size varies.

or some part of server-based computations are offloaded to

p4 targets. Similarly, [55] proposes an in-network computing

system where AI/ML models are offloaded to P4 devices. We

foresee our work to be used in such IoT use cases, especially

for URLLC applications.

VII. CONCLUSION AND FUTURE WORK

In this paper, we motivate the need for acceleration of PUF-

based authentication protocols and offload the PUF verifier of

one of the protocols to a tofino-based programmable switch.

Our evaluation on a real testbed demonstrates that the switch-

based PUF verifier improves average authentication latency

by 100-472%, authentication rate by 53-81%, and scales up

to hundreds of thousands of IoT devices. In our future work,

we plan to build a system on top of the offloaded protocol that

handles: (1) proactive installation of CRPs based on current

usage; (2) scale to more IoT devices by using an efficient

eviction policy; and (3) secure communication using secure

hash functions.
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