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Abstract
Modern cloud applications are refactored into microservices, which
are deployed as containers across multiple servers. An end-user
request often triggers several remote procedure calls (RPCs) be-
tween thesemicroservices. RPC latency anomalies caused by packet-
processing delays (bottlenecks) in the host network stack are com-
mon. Bottlenecks at a few network components can compound
across services, causing SLA violations for many requests.

Diagnosing RPC latency anomalies is challenging because many
host-level components can contribute to the delay. Identifying the
bottleneck component is a crucial first step. However, it often takes
significant manual effort and expertise to find the bottleneck compo-
nent due to the lack of visibility on per-component processing time.
In this paper, we present PerfMon, a lightweight system designed to
monitor the performance of components in the host stack that auto-
matically identifies the bottleneck component. We develop PerfMon
using eBPF technology and evaluate it on a Kubernetes-managed
cluster of bare metal servers. Our evaluation demonstrates that Perf-
Mon introduces minimal monitoring overheads while accurately
identifying the bottleneck components.

CCS Concepts
• Networks→ Cloud computing; Network monitoring.
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1 Introduction
Cloud applications are refactored into multiple microservices dis-
tributed across physical or virtual nodes. These applications gener-
ally have one public-facing or front-end service that handles user
requests by communicating with several other microservices using
remote procedure calls (RPC). Typically, a user request comprises
multiple RPCs, with each RPC traversing a complex path that in-
cludes multiple entities - the source and destination end-host nodes,
and the underlying network. Within an end-host node, the RPC
traverses multiple components in the host networking stack - the
container network stack, the host network stack in the root namespace,
and the network interface stack (Fig. 1).

Request latency anomalies (user requests taking longer to finish)
are common in cloud applications [9, 15] due to their distributed na-
ture. Many recent works [9, 15, 21, 34, 37, 39] have shown that spo-
radic transient packet-processing delays within the host network
stack can increase request completion time by tens of milliseconds.
Moreover, delays at a few components can compound, eventually
leading to SLA violations on the completion time of many user
requests. Debugging such SLA violations is both challenging and
time-consuming, as there are multiple components along the re-
quest path to suspect. The challenge is further compounded by the
transient and sporadic nature of these delays. Therefore, accurately
identifying the bottleneck component, especially within the host
stack, is a crucial first step toward diagnosing the issue. In practice,
due to a lack of fine-grained and end-to-end visibility, the blame
game across the teams (application, server, network) continues un-
til the respective team is proven innocent [37], which takes a lot
of time before the issue is assigned to the appropriate team. It is
crucial to have a performance monitoring system that provides
end-to-end visibility and automatically identifies the bottleneck
component causing RPC latency anomalies.

The existing performance monitoring systems operate either at
the application level or at the host level. Application-level moni-
toring systems [5, 13, 19, 35, 43, 45, 50] perform distributed tracing
and provide the time spent at each microservice. While this helps
identify which RPCs experienced delays, it lacks the granularity
needed to pinpoint the specific component within the host stack
responsible for those delays. On the other hand, end-host tracing
approaches [11, 12, 16, 22, 33, 39] provide deep visibility into the
host network stack. However, they are primarily designed for after-
the-fact analysis rather than the continuous monitoring needed to
detect transient and sporadic delays. Always-on trace collection
imposes significant processing and storage overhead, making it
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Figure 1: An RPC request and response traverse multiple
entities - N1, N2, and network. Within each node, it traverses
host-level components - CNS (container namespace), RNS
(Root namespace), and NIS (network interface space).

impractical for real-time use in production environments. One al-
ternative is to sample or monitor periodically, but it is hard to know
when to collect traces and how long, so they often fail to detect
sporadic and transient events causing bottlenecks (more in §2).

We propose PerfMon, a system that complements the exist-
ing application-level monitoring systems with fine-grained per-
formance monitoring of the components within the host network.
PerfMon enables the identification of the bottleneck component
causing RPC latency anomalies, significantly accelerating the debug-
ging process. The key idea is to continuouslymonitor the processing
time of each component in the host stack and report bottleneck
component details when the processing time takes longer than
expected. This approach keeps the resource overheads low while
accurately detecting abnormal events. We realize this idea using
lightweight eBPF programs deployed at various hook points in the
Linux kernel.

While developing PerfMon, we address three main research chal-
lenges.
C1. Identifying and instrumenting the relevant components.
The first challenge is determining which component timestamps
to collect within the host stack and how to maintain them to ac-
curately identify the bottleneck component. We address this by
understanding the components a packet traverses in the host net-
work stack and instrumenting these components to compute their
processing time. PerfMon continuously monitors the processing
time of packets in both directions (data and acks) and raises alerts
whenever abnormal delays are detected (details in §4.1).
C2. Balancing detection accuracy and overhead. The second
challenge is ensuring that PerfMon’s abnormal delay detection
approach is both accurate and efficient. PerfMon detects a latency

anomaly when the observed processing time deviates from the
expected time using a predefined threshold. Arriving at the right
threshold is challenging due to the heterogeneity in deployments
(multiple instances of each service are deployed across nodes in a
cluster with multiple RPC types and different component-specific
processing times). A threshold value that is too low can increase
the data collection overhead and false positives, whereas a high
threshold canmiss latency anomalies, increasing false negatives.We
address this by carefully profiling application RPCs under various
workloads and deriving thresholds that strike a balance between
overhead and accuracy (details in §4.2)
C3. Distinguishing anomaly from noise. The third challenge
is distinguishing transient and sporadic latency anomalies from
noise (e.g., jitter). Otherwise, PerfMon could raise false positives,
producing alerts that are not relevant. We address this problem
using a smoothing factor that absorbs the noise while detecting ab-
normal delays and reports only relevant alerts representing latency
anomaly events (details in §5).

The key contributions of this paper are:
• We design PerfMon, a performance monitoring system that
enables automatic identification of bottleneck components
within the host network stack responsible for RPC latency
anomalies.

• Weprototype PerfMon and deploy it on a Kubernetes-managed
server cluster running a microservice-based application from
DeathStarBench [14], an open source benchmark suite. Perf-
Mon prototype is available at 1.

• We evaluate PerfMon running on the Kubernetes cluster and
observe that it introduces minimal monitoring overheads
while accurately detecting abnormal delay events with a low
false positive rate. At 40% application load (representing the
baseline average load), the P999 request completion time
increases by only 0.9%. Additionally, while scaling with a
large number of concurrent flows (one million concurrent
flows), PerfMon incurs only 3% drop in throughput.

2 Background and Motivation
2.1 SLA violation due to slow RPCs
User requests to microservice-based distributed applications gen-
erally go to a front-end microservice, which then invokes multi-
ple backend microservices recursively via remote procedure calls
(RPCs). Each RPC request and response traverses multiple end-host
nodes and network devices along its path.
Host-level components.Within each end-host node, an RPC re-
quest traverses multiple components in the host network stack
at both the sender and the receiver, as shown in Fig. 1. The com-
ponents include: (1) the root network stack (RNS) in the host’s
root namespace; (2) the container network stack (CNS) within the
container namespace; and (3) the network interface stack (NIS)
associated with the physical/virtual NIC.

User requests taking longer to finish, leading to an SLA violation,
often result from one or more of the underlying RPCs experiencing
unexpected delays. Operators often struggle to debug such SLA
violations because a bottleneck at any of the host-level components

1https://github.com/networked-systems-iith/PerfMon-SoCC
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Figure 2: Application trace (left) lacks visibility into the host stack. Trace with component-level span (right) is desired.

(either at the sender or the receiver), or a bottleneck in the underly-
ing network or in the application, could lead to high RPC delays.
Application tracing tools like Jaeger [13] provide the span and trace
of user requests (Fig. 2a), where the span is the time a single mi-
croservice takes to execute an RPC, and the trace contains spans of
all RPCs invoked on behalf of the user request. This helps identify
issues at the application level and RPCs that took longer to finish.
However, application tracing tools [5, 13, 19, 35, 43, 45, 50] lack vis-
ibility into delays originating from the host stack and the network.
Conversely, bottlenecks at the network level are diagnosed using
network telemetry tools [38, 40, 42, 44, 48, 51]. In this paper, we
focus on localizing bottlenecks in the end-host stack, which happen
easily but are difficult to mitigate and troubleshoot.

2.2 Host-level bottlenecks inflate RPC latency
Table 1 list the events at host-level components leading to RPC la-
tency anomalies. The two leading causes for bottlenecks are (1) un-
expected CPU scheduling due to interference and (2) traffic bursts.
Unexpected CPU scheduling. CPU interference causes unex-
pected CPU scheduling, leading to CPU starvation (due to HOL
blocking at the scheduler’s ready queue), further causing buffer
build-up at different buffers (such as NIX Rx buffer, CNS socket
buffer). A recent work, nSight [39], observed that unexpected CPU
scheduling and HOL blocking can introduce up to 5ms delay. Simi-
larly, unexpected CPU interference from system calls delayed the
ksoftirq thread, slowing reads from the NIC Rx buffer and delaying
RPC packets up to tens of milliseconds [9, 15].
Incast and microburst. A sudden burst of incoming or outgoing
requests can cause buffer buildup at the NIC, RNS, and CNS. An
incast of many requests to an application pod from other pods
causes buffer buildup at the NIC Rx [31] and CNS socket buffer
[53], eventually inflating RPC latency. At RNS, a high traffic rate
or burst from one or more outgoing flows causes buffer buildup
(forming a standing queue at QDisc) [2, 53].

2.3 Identifying bottleneck component
Need for fine-grained host-stack visibility. Assume that ser-
viceA and serviceB from Fig. 2a are deployed on node N1 and N2,
respectively, as shown in Fig. 1. Consider that the RPC from ser-
viceA to serviceB (3-4) is delayed due to a host-level bottleneck
at N2. Consequently, the associated user request observed an SLA
violation. With the existing application tracing approaches, we can

Table 1: Issues at host-level components

Bottleneck
compo-
nent

Reason for
request
latency
anomaly

Details

NIS
Incast
[31, 37]

When multiple senders send traf-
fic to the same receiver, packets get
queued at the NIC Rx buffer as the
end-host network stack struggles to
process the packets.

RNS
Unexpected
interfer-
ence at
CPU core
[9, 15]

Unexpected CPU interference from
system calls delays scheduling
netdev_subsystem processes (e.g.
ksoftirq thread) slowing reads from
NIC Rx buffers, causing delays up
to 100s of milliseconds.

CNS CPU
polling
hang [37]

Due to CPU starvation, the appli-
cation core reads the data from the
TCP receive buffer slowly.

Burst [53] A microburst of requests to an ap-
plication pod fills the TCP receive
buffer.

identify slow RPCs (Fig. 2a) among all RPCs invoked. However,
they do not provide the fine-grained visibility necessary to iden-
tify the bottleneck network stack component inflating RPCs. More
specifically, serviceB’s span captures the request processing time
at the application level but does not include the time spent in N2’s
CNS, RNS, and NIS. On the other hand, serviceA’s span includes
(1) the time spent in CNS, RNS, and NIS at both N1 and N2; (2)
the time spent in the underlying network; and (3) serviceB’s span.
However, it lacks the fine-grained visibility necessary to identify
the bottleneck component at N2 (e.g., CNS issue in Fig. 2b).

Given an RPC latency anomaly as discussed above (e.g., service A
to B in Fig. 2a), identifying the entity (sender, receiver, or network)
and associated bottleneck component (CNS, RNS, or NIS) is the first
and most crucial step toward fixing the root cause. In practice, this
is often a tedious and contentious process. Most often, application
teams blame the server or network teams for delays [37], and the
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blame game persists until each team proves it is not at fault. A
significant amount of time is wasted just assigning responsibility
to the correct team before debugging can even begin. Streamlining
this process requires having a tool that can automatically iden-
tify the entity and the component responsible for the issue. With
such a tool, engineers can immediately begin focused debugging
by collecting and analyzing component-specific traces (e.g., perf
record [8]) instead of spending many man-hours on collecting and
analyzing traces from all components across entities, as discussed
in blogs [9, 15] and prior research work [37, 39].

2.4 Challenges in identifying bottleneck
component

Two featuresmake bottleneck component identification challenging
F1: Bottlenecks happen at any host-level component. The
bottleneck component could be in the RPC’s sender host network
stack, the receiver host network stack, or both. Finding which com-
ponent in the host network stack is causing SLA violation is non-
trivial [9, 15, 21, 34] because it requires fine-grained instrumen-
tation capable of monitoring processing time at each component
across multiple hosts.
F2: Bottleneck events are sporadic and transient. Events that
cause bottlenecks are usually sporadic and transient. (i) Sporadic
because they occur randomly at unpredictable times [15]. Any
RPC and associated packets processed during the bottleneck event
observe performance degradation. Thus, the monitoring system
must capture performance data of every RPC at all components.
(ii) Transient because they disappear quickly [9]. Therefore, the
monitoring system should maintain fine-grained information (e.g.,
component, timestamp) of abnormal delays so that the bottleneck
component causing an SLA violation can be identified accurately.

2.5 Existing solutions fall short
Solutions based on end-to-end latencymonitoring are insuffi-
cient.Distributed application-level tracing tools such as Jaeger [13],
jcallgraph [45], and xtrace [35], measure the time a user request
spends at each microservice (i.e., span), providing visibility at the
application level, but lack component-level processing time visi-
bility. An alternative approach is to monitor TCP statistics [27, 28,
46, 50, 53] of application traffic or probe traffic and identify the
problematic entity, such as the application, the host stack, and the
network. However, this approach would not provide the necessary
visibility to identify the bottleneck component inside the host stack
(F1).
Solutions based on statistics collected at coarse time scales are
inaccurate. As mentioned earlier, events that cause bottlenecks are
sporadic and transient. Therefore, identifying a bottleneck compo-
nent requires monitoring the performance of every RPC at all times
for all components and capturing logs relevant to latency anom-
aly at each component. Existing fault localization works [28, 53]
monitor TCP connection performance and collect TCP statistics
periodically at coarse timescales to keep the monitoring overhead
low. These statistics are insufficient as they often fail to capture
sporadic and transient anomaly events (F2).

Solutions based on continuous trace collection have high
overheads or require specific hardware. One common approach
is to manually collect and analyze pcap-like traces at each compo-
nent’s ingress or egress at both the sender host and the receiver
host [9, 15, 21, 34]. This is followed by collecting and analyzing host-
level traces [11, 12, 16, 22, 25, 33, 39] (e.g., perf, kprobes, intel-pt) to
find the root cause. This approach provides deep visibility into host-
level events, and such tools are well suited for after-the-fact root
cause analysis, but not for always-on monitoring because of their
high processing and storage overheads. For instance, NSight [39]
collects traces using hardware profiling tool called intel_pt [25],
which requires 1GB of storage space for 1 minute. One alternative
is to offload monitoring computation [37] to specialized hardware
such as smartNICs, but this hinders the deployment because it
requires upgradation to specific hardware.

3 Design
We design PerfMon to identify the bottleneck component accurately
while keeping the compute and storage overheads low. This paper
focuses on RPCs using TCP as the underlying transport protocol,
which is the majority case in practice. One approach is to capture
fine-grained per-packet logs of TCP connections at every host, such
as RTT and per-component timestamps in both directions and ana-
lyze the time spent at each component. Moreover, continuous RTT
monitoring of every RPC’s TCP packet gives a good estimate of
end-to-end delay [32] as it covers the time spent in the entities (i.e.,
host network stack, and the underlying network). This approach
can accurately record transient and sporadic bottleneck events, but
collecting, maintaining, and analyzing per-packet logs has high
compute and storage overheads. Also, only a few packet logs are
relevant to the bottleneck event, whereas the rest add significant
overhead without contributing useful diagnostic information.An
alternative is to collect only relevant logs. But it is extremely chal-
lenging to know when to start collecting logs and how long because
of the sporadic and transient nature of the events.

PerfMon addresses this problem based on the design principle
that capture relevant logs at the right time following distributed
monitoring. The key idea is to continuously monitor per-packet
RTT and component-level processing time and capture relevant
logs only when they deviate from normal behavior; that is, they are
found to be abnormal. This approach keeps the resource overheads
low while accurately detecting transient and sporadic delay events.
We realize this idea using lightweight eBPF programs deployed at
various hook points in the Linux kernel. eBPF allows safe and secure
extensions without changing the kernel source code or loading
kernel modules. The ability to run programs in kernel space enables
massive efficiency gains of up to 10x [26] faster execution when
compared to running them in user space, making it an ideal choice
for monitoring and observability.

3.1 PerfMon
PerfMon system overview. PerfMon comprises three compo-
nents: (1) a Data Plane Agent (DPA); (2) a Control Plane Agent
(CPA); and (3) a Central Controller (CC), as shown in Fig. 3. The
DPA is deployed across eBPF hookpoints, whichmonitor per-packet
RTT and component-level timestamps and raise alerts for CPA
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whenever latency anomalies are detected. While designing DPA,
we address the challenges C1, C2, and C3, as mentioned in §1, and
incorporate the proposed solutions. The CPA shares the time and
location of each latency anomaly with the central controller. Finally,
the central controller runs queries on the database and pinpoints
the bottleneck component (i.e., CNS, RNS, NIS).
Example workflow. S1: From the dashboard, assume that an oper-
ator observes a user request takes longer to finish (SLA violation).
S2: The operator retrieves the application-level trace for this user re-
quest, which contains details of all RPCs invoked and the time each
RPC takes. S3: Next, the operator identifies the slow RPCs (those
took longer than expected) and requests the central controller to
find if there is any problematic network stack-level component in
the slow RPC path. S4: The central controller queries the database,
analyzes alerts from the components in the RPC path, and identifies
the entity and associated components potentially affecting the RPC
completion time.
Root cause diagnosis. Finding the bottleneck’s cause is not in the
scope of this paper. However, we highlight how identifying the bot-
tleneck component (the outcome of this paper) helps to automate
and find the root cause. Once the bottleneck component is identified,
we can instruct the host (i.e., entity) to enable trace collection only
at the problematic component (instead of all components at the
sender and receiver) using either eBPF kprobes [17] or CPU hard-
ware profilers like intel_pt [25] or other tracing tools [12, 22]. The
collected traces have process IDs, call traces, and per-call latency
distributions, which can be correlated to find the cause [9, 15].

4 Data Plane Agent (DPA)
PerfMon’s DPA is designed to perform the following tasks: (1)
monitors the performance of TCP connections (associated with
each RPC) across host-level network components (§4.1), (2) detects
abnormal delays and reports the occurrence of abnormal delays to
a control plane agent (§4.2).

4.1 Performance monitoring
RTT monitoring gives a good estimate of end-to-end delay [32].
However, this is insufficient to find the bottleneck component in
the host stack, causing high RTT delays. The bottleneck component
could be one or more host-level components such as CNS, RNS, and
NIS. Therefore, per-component monitoring and necessary instru-
mentation are essential for accurately identifying the bottleneck
component (C1 in §1). To do so, we track the set of components
that a packet traverses in a typical Linux-based host network stack

and identify five types of per-component timestamps sufficient to
monitor.

To understand this better, we break down the host components
between the two nodes, N1 and N2. Fig. 4a shows the data exchange
between N1 and N2 in a TCP-based RPC. The data (D) packet from
the application microservice A traverses the N1’s CNS and enters
RNS via the veth interface associated with A’s pod. From the RNS,
N1 is left via the ext interface (the network interface that connects
N1 to other cluster nodes). It traverses the underlying network,
followed by RNS, CNS, and application microservice B at N2. It
comprises (i) data (D) from N1 to N2; (ii) data+ack (DA) from N2 to
N1 and; (iii) ack (A) from N1 to N2. The data+ack (DA) packet from
N2’s CNS follows the reverse path whereas ack (A) packet traverses
the path same as data (D).

We instrument the host network stack to capture five types of
timestamps that are sufficient to identify the bottleneck component:

• RTT: The time between the outgoing data packet and corre-
sponding incoming acknowledgment observed at the pod’s
veth interface. (e.g., N1-RTT and N2-RTT in Fig. 4a).

• RNSTD: The time spent in RNS by data packet (e.g., N1-
RNSTD in Fig. 4a ).

• RNSTDA: The time spent in RNS by data+ack packets (e.g.,
N1-RNSTDA in Fig. 4a).

• RNSTA: The time spent by the ack packet in RNS (e.g., N1-
RNSTA in Fig. 4a).

• CNST: The time elapsed between an incoming data packet
and corresponding outgoing acknowledgement observed at
the veth interface (e.g., N1-CNST and N2-CNST in Fig. 4a).

Cause affect analysis. As shown in Fig. 4b, an abnormal delay at
any of the above monitored times affects the RTT observed at N1
and N2. For example, high N1-RTT could be due to an increase in
one or more N1-RNSTD, N2-RNSTD, N2-CNST, N2-RNSTDA, N1-
RNSTDA. The causality graph depicting the cause-and-effect rela-
tionship between the above-mentioned monitored times and the
RTT observed at N1 and N2 is also shown in Fig. 4b. Since the per-
component delay information collected at one node is not locally
visible to the other node, the information must be either shared
between the nodes or reported to a central entity. We adopt the
latter approach, using a central controller (CC) because of its ease
of managing and abstracting the underlying primitives. The CC
takes care of identifying the bottleneck entity and the component
(details in §6)

To differentiate between the time spent in RNS by an outgoing
data packet (D) and an incoming data packet (DA), we separate
the RNST into RNST1 (sum of RNSTD and RNSTDA) and RNST2
(sum of RNSTDA and RNSTA). To summarise, PerfMon collects and
monitors RTT, RNST1, RNST2, and CNST on each end-host node.
In this work, we do not monitor the time spent in NIS explicitly;
instead, we treat NIS as part of the underlying network. Using
smartNICs for capturing NIC timestamps is a promising future
research direction.

4.2 Capturing latency anomalies
Latency anomaly detection. Continuously collecting and main-
taining all per-packet timestamps at each component helps to
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Figure 4: Abnormal delays at different components inflate RTT observed at different entities

achieve good accuracy but has huge computation and storage over-
heads (C2 in §1). To keep the overheads low, we design PerfMon’s
DPA to monitor per-component packet processing time and de-
tect latency anomalies. This will significantly reduce the collection
and storage overheads without compromising detection accuracy.
Specifically, we design the DPA to monitor and detect deviations in
per-component processing times. Upon detecting an anomaly, the
DPA captures the component details and the time of occurrence of
the bottleneck event so that the SLA violations observed at the RPC
level can be reasoned by correlating with the problematic host-level
component.

To realize our light-weight approach, we design our detection
algorithm with the following two key features. First, we maintain
the time spent values at the connection level (i.e., flow level) instead
of at the packet level so that all packets of a connection share the
state. Also, we observed that multiple RPCs from one service to
another share the same connection that stays for longer durations.
This means the state per service instance (say A) is proportional
to the number of instances of the other service (say B) it is talking
to. For each connection, we maintain f-RTT, f-RNST1, f-CNST, and
f-RNST2 as a moving average of time spent by individual packets,
i.e., RTT, RNST1, CNST, and RNST2, respectively.

Second, to keep the detection algorithm’s computation light-
weight and amenable to implementation at an eBPF hook point, we
do a threshold-based check on per-component processing times.
The main challenge is concerned with deriving the right threshold;
a threshold value that is too low can lead to too many false alerts
and associated overheads, whereas a threshold value that is too high
may fail to capture latency anomalies (false negatives). An ideal
threshold should strike a balance. We carefully derive the threshold

in two steps. First, we derive a baseline processing time (𝐵) for each
component by profiling the application under various workloads.
Next, we derive the threshold (T) higher than the baseline by Δ.
The design choices and their importance are as follows.
(1) Deriving baseline. For a cloud-native application managed by
a Kubernetes-like cluster, deriving a baseline for the expected pro-
cessing time of each host network stack component is challenging.
This is because the application comprises multiple services, where
each service has multiple instances deployed across nodes in the
cluster. Some RPCs are made across nodes (inter-node), and some
within the same node (intra-node). To address this, we propose a
topology-based categorization approach. We classify the RPCs into
two categories: inter-node and intra-node, and derive separate base-
lines (and corresponding thresholds) for each component within
these categories. This approach is based on the observation that
the layer-4 RTT is primarily influenced by delays in the network
path comprising both the host network stack and the underlying
network, and is relatively unaffected by application-layer process-
ing time. To be concrete, inspired by a recent work [47], we profile
the application at 40% workload (representing typical workload
condition) and find the P99 values for RTT, RNST1, CNST, and
RNST2 for all RPCs. Then, we categorize the RPCs into two buck-
ets (inter-node and intra-node), and the average of each bucket is
considered the baseline value.
(2) Deriving threshold (T). In general, a threshold T is derived
from the baseline B [29] following the equation,𝑇 = 𝐵+Δ, where Δ
is chosen based on the requirements specific to anomaly detection.
Since our goal is to detect RPC latency anomalies in the order of tens
of milliseconds (50ms-100ms) that potentially cause SLA violations,
we adopt a percentile-based thresholding approach [47]. Specifically,
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Figure 5: f-RTT, f-RNST1, f-CNST and f-RNST2 aremonitored
at three different hook points

we define Δ as a multiple of the baseline value calculated as the
average of P99 values in the previous step. We believe that this
strategy is well-suited for identifying the class of latency anomalies
we target (in the order of 50-100ms). To derive the threshold for each
component timestamp (RTT, RNST1, CNST, and RNST2), one naive
approach is to scale all the baseline values by a constant factor X.
However, since CNST and RNST values are relatively much smaller
than the RTT, this approach can lead to generating many false alerts
for CNST and RNST without any RTT alerts, leading to too many
false positives. As an alternative, we adopt to scale component
thresholds proportionally based on their contribution to RTT (Eq.
(1)). This ensures CNST and RNST anomalies are flagged only when
their contribution to the overall RTT is significant, that is, when
they are likely to affect the RPC latency, thus keeping the false
positive rate low. In our prototype, we empirically select the scaling
factor X that minimizes the number of alerts (see Fig. 12b) at 40%
application load [30]. However, operators can also tune X based
on the application’s latency tolerance, such as acceptable delay
magnitude and duration.

𝑇 RTT = 𝑋 ∗ 𝑅𝑇𝑇
𝑘 = ⌊𝑅𝑇𝑇 /𝑅𝑁𝑆𝑇 1⌋ 𝑎𝑛𝑑 𝑇 RNST1 = 𝑋 ∗ 𝑘 ∗ 𝑅𝑁𝑆𝑇 1

𝑙 = ⌊𝑅𝑇𝑇 /𝐶𝑁𝑆𝑇 ⌋ 𝑎𝑛𝑑 𝑇CNST = 𝑋 ∗ 𝑙 ∗𝐶𝑁𝑆𝑇

𝑚 = ⌊𝑅𝑇𝑇 /𝑅𝑁𝑆𝑇 2⌋ 𝑎𝑛𝑑 𝑇 RNST2 = 𝑋 ∗𝑚 ∗ 𝑅𝑁𝑆𝑇 2

(1)

Handling change in threshold. The preset threshold used in Perf-
Mon depends on the underlying hardware, operating system, and
the average workload; thus, it can change if any of these factors vary.
For instance, if the baseline average application workload changes
or if the operator upgrades the underlying hardware/OS/software,
leading to a change in earlier agreed SLA on request latency, then
PerfMon requires reprofiling and updating the threshold. The oper-
ator can plan to reprofile either during the planned maintenance
window or during non-peak hours, minimising the impact on ap-
plication performance. Further, DPA can be configured to use the
newly updated threshold.

4.3 Detection algorithm and Implementation
eBPF hookpoints. PerfMon attaches eBPF programs for moni-
toring and anomaly detection at two hook points in the host: 1)
microservice’s virtual ethernet (veth) interface ingress and egress,
and 2) ext’s ingress and egress, where ext is the interface that con-
nects the host to other cluster nodes. As shown in Fig. 5, f-RTT and
f-RNST1 are monitored at veth egress, f-CNST at veth ingress, and
f-RNST2 at ext egress.

Algorithm 1 DPA pseudo code for monitoring and detecting ab-
normal packet-processing delay events
1: Input:
2: f, RTT, RNST1, CNST, RNST2
3: f = (srcIP, srcPort, dstIP, dstPort)
4: 𝛼 - smoothening factor, varies from (0,1)
5: Output:
6: alert for the monitored data
7: alertRTT = (f, 1, RTT, seqNo, ackNo)
8: alertRNST1 = (f, 2, RNST1, seqNo, ackNo)
9: alertCNST = (f, 3, CNST, seqNo, ackNo)
10: alertRNST2 = (f, 4, RNST2, seqNo, ackNo)

11: begin:
12: (1) At veth egress:
13: for each data+ack packet for flow f do
14: f-RTT = 𝛼 ∗ f-RTT + (1 − 𝛼) ∗ RTT
15: f-RNST1 = 𝛼 ∗ f-RNST1 + (1 − 𝛼) ∗ RNST1
16: if f-RTT > TRTT then
17: send_event (alertRTT)
18: end if
19: if f-RNST1 > TRNST then
20: send_event (alertRNST1)
21: end if
22: end for

23: (2) At veth ingress:
24: for each ack packet for flow f do
25: f-CNST = 𝛼 ∗ f-CNST + (1 − 𝛼) ∗ CNST
26: if f-CNST > TCNST then
27: send_event (alertCNST)
28: end if
29: end for

30: (3) At ext egress:
31: for each ack packet for flow f do
32: f-RNST2 = 𝛼 ∗ f-RNST2 + (1 − 𝛼) ∗ RNST2
33: if f-RNST2 > TRNST then
34: send_event (alertRNST2)
35: end if
36: end for
37: end

Detection algorithm. Algorithm 1 shows the pseudo-code of Perf-
Mon’s detection of latency anomalies at node N1. Upon exceeding
the pre-defined threshold (as discussed in §4.2), an alert comprising
five fields: 4-tuple flow-id (f), alertType (1 to 4), abnormal packet
processing time (one of RTT, RNST1, RNST2, CNST), sequence
number (seqNo), and acknowledgment number (ackNo), is sent to
the CPA.

5 Control plane agent (CPA)
A burst of packets can arrive at a component during the bottleneck
period, where per-component processing time for these packets
exceeds the respective threshold. It is crucial to not to overwhelm
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Figure 6: Identifying problematic component

the CPA with too many alerts. At the same time, the alerts due to a
bottleneck event should be differentiated from random alerts due
to noise (C3 mentioned in §1). We address this by introducing a
temporary buffer at the CPA, which buffers alerts from the DPA for
a short time. More specifically, the CPA starts a timer on receiving
an alert, if the timer is not running. If the number of alerts in
a window exceeds a pre-defined threshold, say T, the alerts are
sent to the controller; otherwise, they are ignored. T is inversely
proportional to the smoothing factor 𝛼 used in per-connection
processing time (i.e., RTT, RNST1, CNST and RNST2) computation
in the DPA (see Algorithm1). That is, for higher 𝛼 values (e.g., 0.6 ≤
𝛼 ≤ 1), as the average smooths out without immediately reflecting
on RTT/RNST1/CNST/RNST2 violations, there are fewer random
alerts. On the other hand, for lower 𝛼 values (e.g., 0 ≤ 𝛼 ≤ 0.4), more
random alerts are sent to the CPA. Fig. 7 depicts this relationship
between 𝛼 , T, and the alerts generated. Based on the 𝛼 value, T
is configured such that the classification of random and relevant
alerts is accurate. We set T to 10 as suggested in [27].

6 Central controller (CC)
This section explains how the CC identifies the bottleneck compo-
nent causing increased RPC completion time (i.e., slow RPC).

The CC receives alerts from CPA agents running on each cluster
node and adds the alerts to the alertDB that are later queried for
bottleneck identification. As shown in Fig. 6, on observing high de-
lays for end-user requests (S1), the operator retrieves the associated
application trace (like Jaeger) and the details of slow RPC (S2). The
operator then queries the alertDB and retrieves alerts overlapping
with the slow RPC period (S3). CC then executes its bottleneck
identification algorithm (discussed below) on the retrieved alerts to
identify the bottleneck component responsible for slow RPC (S4).
Bottleneck identification. To localize the source of an RPC la-
tency, CC retrieves the potential bottleneck components (bottle-
neck candidates) and timestamps from the alertDB. CC identifies
the bottleneck component from the bottleneck candidates using a
candidate selection algorithm based on the relative importance of
each component [41] in affecting the RTT. Per-component relative
importance is computed based on each component’s contribution
towards RTT deviation (from the threshold). The component with
the maximum contribution is given the highest importance and

identified as the candidate bottleneck component. More specifically,
consider C1, C2, ..., Cn as the candidate bottleneck components and
t1, t2, ..., tn as the time spent at the respective components. We
represent RTT as the sum of time spent at each component (Eq. 2).

𝑅𝑇𝑇 =
∑︁

𝑡 i (2)

We then determine the RTT deviation (𝐷RTT) and per-component
deviation (𝐷 i) as the deviation of the observed value from the thresh-
old value (Ti)(Eq. 3).

𝐷RTT = 𝑅𝑇𝑇 −𝑇 RTT

𝐷 i = 𝑡 i −𝑇 i
(3)

Per-component relative importance, 𝑋 i is computed based on
the contribution towards DRTT (Eq. 4).

𝑋 i = 𝐷 i/𝐷RTT (4)

The component that contributes the maximum towards RTT de-
viation is identified as the candidate bottleneck component (Eq. 5).

if 𝑋 i =max(𝑋 1, 𝑋 2, ..., 𝑋 n) then,
𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 =𝐶 i

(5)

Example. Consider N1-RTT violation caused by a bottleneck in
N2-CNST and N1-RNST1, resulting in an increase in end-user re-
quest delay. CC identifies N2-CNST and N1-RNST1 as the candidate
bottleneck components.

𝐶 = {𝑁 2-𝐶𝑁𝑆𝑇, 𝑁 1-𝑅𝑁𝑆𝑇 1}
𝑅𝑇𝑇 = 𝑡N2-CNST + 𝑡N1-RNST1

(6)

With an RTT deviation (DRTT) of 50ms and per-component devi-
ation of 35ms (DN2-CNST) and 15ms (DN1-RNST1), CC computes the
relative importance and candidate selection as below.

𝑋N2-CNST = 35/50 = 0.7
𝑋N1-RNST1 = 15/50 = 0.3
𝑋 =𝑚𝑎𝑥 (0.7, 0.3) = 0.7
𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 𝑁 2 −𝐶𝑁𝑆𝑇

(7)

7 Identifying bottleneck component using
PerfMon

This section explains how PerfMon’s bottleneck component identi-
fication helps to diagnose the root cause of RPC latency anomalies
observed for an application deployed in a Kubernetes cluster. We
deploy hotelReservation application from DeathStarBench, an open
source benchmark suite [14, 36], on a Kubernetes cluster with three
bare-metal servers (master, worker1, and worker2). We send user re-
quests to hotel recommendations using a workload generator from
the benchmark suite [14]. Each user request passes through three
services: frontend, recommendation, and profile. Using stress-ng [23]
tool, we inject a fault that throttles CPU for recommendation con-
tainer for every 30 seconds. When a user request overlaps with the
CPU throttling period, the completion time of GetRecommendation
RPC from the frontend shoots up to ≈100ms, as shown in Fig. 8.
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Figure 7: Alerts rate for different 𝛼 and
T values
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Figure 8: GetRecommendation span
shows latency anomalies
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Figure 9: Recommend span does not cap-
ture abnormal delays by CNS component

The span of recommend microservice, as shown in Fig. 9, does not
detect any deviation, which indicates the delays are not from the
application level. Next, we query PerfMon’s central controller (§6)
to find possible bottlenecks in the host stack during the slow RPC
period. It responds with CNS as the bottleneck component and
worker node 2 as the entity. This way PerfMon helps to quickly nar-
row down and look at the potential issues at a specific component
which saves a lot of time. To find the cause for the bottleneck, the
operator can check for the possibility of socket buffer build-up by
monitoring the socket’s send and receive queue using lsof -T q [6])
command from the pod’s namespace. The most popular root causes
for socket buffer build-up are a sudden increase in requests (incast)
or CPU contention in the pod (Table 1). Finally, the cause can be
determined by collecting and analyzing low-level logs, such as the
pod’s interface statistics for the incast case and perf record [8] for
the CPU contention case.

8 Evaluation
We evaluate PerfMon against the following questions:

• Performance overhead: What is the impact of PerfMon on
application’s request completion time (RCT) and requests
completed per second (RCS)?

• Scalability: What is the impact of PerfMon always-on moni-
toring on throughput at high packet rate?

• Effectiveness: Does PerfMon detect abnormal transient spo-
radic delay events and capture alerts relevant for identifying
the problematic component?

Implementation. PerfMon comprises three modules: (1) Data
plane module, (2) Control plane module, and (3) Controller module.
The data plane module comprises four eBPF programs attached to
one of the TC hook points (shown in Fig. 5) that track the times-
tamps as discussed in Fig. 4a. We enable receive flow steering
(RFS)[20] to steer packets to the CPU on which the receiving ap-
plication is running and use per-CPU LRU (least recently used)
hash maps to store the monitored timestamps. We implement the
eBPF program on Linux kernel version 5.15.0-86-generic using
≈1200 LOC. The control plane module is implemented in the C
language (GLIBC 2.35) using ≈850 LOC. The central controller is
implemented in Python3.10. We implement a UDP server at the
controller to receive flow reports from the control plane agent. The

(a) Alerts generated (b) Average alert rate

Figure 10: Threshold scaling factor X=3 has the least alert
rate.

central database is MongoDB (version 7.0.2), containing four tables.
Each table stores the RTT, RNST1, CNST, and RNST2 violation
reports received from the control plane agent. To compare Perf-
Mon with TCP-stats-based periodic monitoring, we also implement
TCP-stats-based periodic monitoring in python3.7 comprising 150
LOC. The program periodically monitors the per-flow RTT from
each service pod using Linux ss[3] command.

8.1 Impact on application performance
Objective. To understand the PerfMon’s impact on application
performance and its compute and memory overheads.
Experiment setup. We evaluate PerfMon in a Kubernetes cluster
with three bare metal servers, one as a master and the other two as
workers. The servers are connected to a top-of-rack switch via a
1 Gbps link. Each server has AMD EPYC7262 8-core 3.20GHz CPU
and 64 GB RAM.We deployed the hotelReservation application from
DeathStarBench open source benchmark suite [14, 36]. Flannel [4]
is used as the CNI. PerfMon’s DPA and CPA are deployed on the
worker nodes, and PerfMon’s controller and database are deployed
on the master node. Workloads are generated using wrk2 [24], an
HTTP benchmarking tool.

Deriving threshold. To find the threshold value for our setup,
we profile the hotelReservation application. We collect per-packet
RTT for each RPC flow and derive the inter-node and intra-node
baseline as the average P99 values of all the inter-node and intra-
node RPC flows. As discussed in §4.2, we use the contribution-based
scaling approach at 40% application load (as suggested in [30]) and
find the scaling factor X that has alert rate ≤ 1. Fig. 10 shows the
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(a) RCT and RCS at 40% load (b) RCT and RCS at 60% load (c) RCT and RCS at 70% load

Figure 11: Average, P99, and P999 application RCT and average RCS for different loads.

(a) CPU and memory utilization (b) Alert rate from DPA

Figure 12: For varying application load, (a) utilization and (b)
alert rate

alerts generated by DPA and the alert rate for different X values.
Based on the results, we set X to 3 as it has the lowest alert rate
and derive the threshold as described in §4.2.

Performance metrics and experiment. We study the impact
of PerfMon on application performance in terms of: (1) the number
of application requests completed per second (RCS), (2) request
completion time (RCT), (3) memory utilization, and (4) CPU utiliza-
tion.We vary application workload (40%, 60%, and 70%) and conduct
experiments for five different systems: (1) Benchmark application
without any monitoring (B); (2) Benchmark with PerfMon (P); (3)
Benchmark with only application-level tracing using Jaeger (J); (4)
Benchmark with PerfMon and Jaeger (P+J). and (5) Benchmark with
TCP-stats-based monitoring (T).
Results. Fig. 11 shows the RCT and RCS of all five systems at dif-
ferent workloads. Compared to the benchmark (B), we observe that
PerfMon (P) overhead is minimal as it slightly increases the P999
latency by 0.9% for 40% load. This increase in latency is attributed
to PerfMon’s monitoring and processing overheads. However, as
we increase the workload, P999 latency increases by 15%, and 25%
for 60%, and 70% workloads, respectively. The increase is higher
at 60% and 70% load because as the load increases, more alerts are
generated by PerfMon’s DPA, which is evident from Fig. 12b. At
high load, packets are queued at the application socket buffers, ex-
ceeding CNST and RTT thresholds, followed by alerts. On the other
hand, T increases both P99 and P999 latency which is reflected also
as a drop in RCS. When compared with B, T increases P999 latency
46%, 400%, and 440% respectively, for 40, 60, and 70% workload.

Figure 13: Impact of PerfMon always-onmonitoring on appli-
cation throughput with increasing concurrent connections

From Fig. 12a, we observe that average CPU utilization increases
as the load increases for all the systems. It is worth noting that
the CPU utilization remains almost the same for B and P across
different loads. However, TCP-stats-based monitoring increases
the CPU utilization by 32% for 40% load. On the other hand, B and
P have similar average memory utilization across workloads; P
increase the memory utilization by a meagre 1% accounting to the
eBPF maps for storing monitored component timestamps. Whereas
J, P+J, and T requires more memory. J and P+J increases memory
utilization by ≈ 4% due to Jaeger’s memory overheads for trace
collection and T increases the memory utilization by 26%.

8.2 Scalability
Objective. To study the impact of PerfMon DPA (always-on per-
packet monitoring) at high packet rates (40Gbps) and with many
concurrent flows.
Experimental setup. The experimental setup comprises a Ku-
bernetes cluster with two nodes. Each node is a bare metal server
equipped with two Intel(R) Xeon(R) Silver 4316 20-core 2.30GHz
CPU with 256 GB RAM and a 40 Gbps Netronome Agilo Smart-
NIC [10]. These nodes are directly connected using QSFP40Gb
Ethernet copper cable. We use ntttcp[7] to generate many concur-
rent flows (1 million concurrent flows). We deployed ntttcp client
on the master node to generate flows. ntttcp server with PerfMon
monitoring deployed on the worker node acts as the DUT (device
under test).
Performance metrics and experiment. We study the impact
of PerfMon’s always-on per-packet monitoring using application
throughput as the performance metric. We perform the experiment
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by varying the number of concurrent connections using ntttcp. Our
experiment comprises 5 iterations. Each iteration consists of 5 runs,
each lasting 120 seconds.
Results. Fig. 13 shows the application throughput achieved with-
out any monitoring (benchmark B), with PerfMon monitoring (P),
and with always-on TCP-stats monitoring (T). The secondary Y-
axis shows the drop in throughput compared with the baseline
case. We can observe that PerfMon causes minimal impact on appli-
cation throughput with increasing concurrent connections. With
one million concurrent connections, PerfMon monitoring reduces
the application throughput by ≈3%. This drop is negligible for an
always-on per-packet monitoring. On the other hand, T reduces the
throughput by ≈13% adversly affecting application performance.

8.3 Effectiveness
Objective. To study PerfMon’s effectiveness in detecting transient
and sporadic events causing bottlenecks in the host.
Setup and metrics. The experiment setup is the same as the one
described previously in 8.1. We evaluate PerfMon’s effectiveness in
terms of its ability to (1) detect bottleneck components, (2) minimize
random alerts, and (3) detect transient and sporadic bottleneck
events. We use tc-netem [1] to inject processing delays in CNS
(pod interface eth0) and RNS (Linux bridge cni0). We consider FPR
(false positive rate), FNR (false negative rate), and accuracy as the
metrics. From the literature and blogs [9, 15, 39], we understand
that transient and sporadic bottleneck events can cause processing
delays varying from 10ms to 100ms and can last for 30ms to 50ms.
Hence, we inject 10ms processing delays (fault) randomly at CNS
and RNS, each lasting for 40 ms in our experiment run for 120
seconds.

8.3.1 Detecting bottleneck component. Fig. 14 shows the DPA and
CPA alerts generated by PerfMon with synthetic fault injection
at CNS and RNS. As shown in Fig. 14, we inject processing delays
(fault) twice during the 120-second run, and PerfMon detects and
captures both the delay events. CNS fault in the pod inflates the
RTT and CNST of ingress RPC request packets destined for the
pod. Hence the number of CNST and RTT alerts are almost equal
(Fig. 14a). However, with the RNS fault in the node, the number
of alerts is higher (Fig. 14b) as the RNS fault affects multiple RPCs.
Also, the number of RTT alerts is almost double that of RNST
alerts because RNS fault inflates the RTT of both RPC requests and
responses (packets exchanged in both directions). That is, the RNS
fault inflates RNST1 of RPC response packets (egress packets from
the node) and RNST2 of RPC request packets (ingress packets to
the node), thus inflating RTT of both request and response.

8.3.2 Minimize random alerts. Table 2 shows the FPR and FNR of
DPA alerts (alerts with noise) and CPA alerts (alerts after noise
reduction). CPA reduces the FPR by 80% and 73% for CNS and
RNS faults, respectively. This shows that CPA successfully ignores
random alerts (noise) from relevant alerts, which minimizes false
positives and reduces PerfMon’s compute and storage overhead
(which will otherwise be spent on false positives). As PerfMon
detects both the injected faults, FNR becomes zero for CNS and
RNS. Also, the average alert rate shows the number of packets

Fault DPA CPA Avg. alert rate
FPR FNR FPR FNR

CNS 0.071 0 0.014 0 1.36

RNS 0.056 0 0.015 0 6.87
Table 2: CPA reduces FPR by 80% for CNS faults and by 73%
for RNS faults.

(a) CNS fault (b) RNS fault

Figure 14: PerfMon’s DPA detects bottleneck component and
generates alerts

(a) Accuracy (b) FPR and FNR

Figure 15: PerfMon’s detection accuracy is high for bottle-
neck events lasting 8ms or more.

affected by the fault; it is higher for RNS fault because RNS fault
affects multiple RPCs.

8.3.3 Detect transient and sporadic bottleneck events. To under-
stand PerfMon’s ability to detect transient and sporadic bottleneck
events, we inject processing delays (faults) at CNS randomly, caus-
ing a 10ms delay while varying the duration of the fault from 1ms to
32ms. Fig. 15 shows the detection accuracy, FPR, and FNR observed
at CPA and DPA. We observe that PerfMon’s detection accuracy
increases with fault duration (Fig. 15a). With faults lasting 8ms or
more, PerfMon has high accuracy with FNR close to zero (Fig. 15b).
But for shorter fault durations (1ms and 2ms), PerfMon’s accuracy
is low because the fault affects only a few packets, which gets
smoothened without inflating the EWMA for larger 𝛼 values (as
discussed in §5). Consequently, the DPA either fails to generate or
generates fewer alerts, leading to higher DPA-FNR. Further, CPA’s
noise reduction identifies these alerts as noise, leaving CPA-FNR at
1. As the fault duration increases, PerfMon’s FNR decreases. Specif-
ically, PerfMon FNR falls to zero for transient faults lasting as low
as 8ms.

8.3.4 Comparison with TCP-stats-based monitoring. We compare
PerfMon’s effectiveness in detecting transient and sporadic faults
with that of TCP-stats-based always-on monitoring. We inject a
CNST delay of 10ms and set the fault duration to 8 and 16 mil-
liseconds and compare the effectiveness using FNR as the metric.
In the previous experiment, we already observed that PerfMon
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(a) FNR (b) CPUandmemoryutilization

Figure 16: Comparison between PerfMon (P) and TCP-stats
based monitoring (T)

successfully captures all the faults when the fault lasts for 8ms or
more (Fig. 16a). However, on the contrary, with TCP-stats-based
monitoring, we observe that when the delay lasts 8ms and 16ms,
the FNR is as high as 81% and 79%. This is because TCP-stats-based
monitoring does not monitor per-packet latencies and hence is not
fine-grained enough to capture transient sporadic faults. Addition-
ally, when compared with PerfMon, always-on TCP-stats-based
monitoring requires 6x and 24x more CPU and memory (Fig. 16b).

9 Related Work
Application-level tracing. Application-level tracing tools [5, 13,
19, 35, 43, 45, 50, 52] provide the datapath (microservices) that a
request has traversed and the amount of time spent at eachmicroser-
vice. However, they do not provide visibility below the application
layer. That is, they can tell which RPC in a given user request is
experiencing delays but cannot tell which underlying entity and
associated component is causing those delays.
Host-level tracing. End-host tracing tools [11, 12, 16, 22, 33, 39]
provide deep visibility into host-level events. For instance, NSight [39]
captures the end host system state using a hardware profiling tool
called intel_pt [25] and identifies the root cause of delays. Though
such tools can identify the problematic component, they suit well
for after-the-fact root cause analysis because of their high storage
overheads. We observe that running intel_pt for 30 seconds and 60
seconds requires around 440MB and 1GB of storage space, respec-
tively. We envision such tools complement our approach – after
identifying the problematic component, component-level traces
provided by these tool helps to find the root cause.
NIC-level monitoring. BuffScope[37] is a buffer-based request
event monitoring system that provides end-to-end visibility across
different entities and also at the end-host stack level. Visibility at the
end-host stack is achieved by monitoring various buffer events, and
end-to-end visibility is achieved by RPC packet instrumentation,
leveraging the capabilities of SmartNICs. Buffscope assumes that
the data centre’s east-west traffic is unencrypted, which makes
packet-level instrumentation less practical to deploy.
Network monitoring. Network monitoring tools [38, 40, 42, 44,
48, 51] provide details of flows subject to congestion at a switch in
a data center network space. Since the RPC information from an
application trace contains flow information in the cluster address
space, this information is insufficient for correlating flow informa-
tion from different locations, hindering end-to-end visibility.
Host network stack-level monitoring. Host-INT [49], an eBPF-
based system, extends INT[18] support to the end-host network-
ing stack. This provides end-to-end visibility as packets traverse

switches, end hosts, and application containers. Host-INT collects
records for every packet at every host and exports records to a cen-
tral database. Continuous per-packet record collection, processing,
and storage have huge performance and storage overheads.

10 Discussions
Impact of workload variation on preset threshold and alerts.
In deployments using orchestrators like Kubernetes, pod autoscal-
ing ensures a predictable maximum workload at each pod as the
workload varies. Based on the predictions, it is feasible to derive a
preset threshold to detect anomalies. In such cases, higher appli-
cation load does not lead to latency anomalies; therefore, do not
generate alerts. Hence, variation in workload does not require any
change in the preset threshold. However, if an increased workload
still results in latency anomalies, it indicates an underlying issue.
In such scenarios, PerfMon correctly detects the anomaly and gen-
erates alerts, which is the intended behavior. PerfMon use 40% load
as the baseline workload for deriving the threshold. However, if the
operator wishes to change the baseline workload (due to applica-
tion feature change/optimization/configuration and infrastructure
change etc.), then PerfMon requires reprofiling the application at
the new baseline load and updating the threshold values.
Impact of software andhardware upgrades onPerfMon thresh-
old. In the cloud, operators often perform periodic updates and
maintenance of the operating system, middleware, and the under-
lying hardware infrastructure. These tasks are often transparent
to the tenants and performed without impacting the application
SLA. Though an OS upgrade or a hardware upgrade can improve
the baseline RNST, CNST, and RTT values, PerfMon need not re-
compute the threshold because any anomaly at the RPC level that
potentially causes an SLA violation is still detected by the preset
threshold. However, if the provider and the tenant decide to update
the SLA following the upgrade, then PerfMon requires reprofiling
and updating the threshold. The provider can plan to reprofile ei-
ther during the planned maintenance window or during non-peak
hours to minimize the impact on the application performance.

11 Conclusion
We present PerfMon, a lightweight performance monitoring sys-
tem that enables the automatic identification of bottleneck compo-
nents in the host network stack. PerfMon complements the existing
application-level monitoring system and helps to quickly assign the
issue to the right team in operations. We developed PerfMon using
eBPF technology and tested it by deploying it on a Kubernetes-
managed cluster of servers. PerfMon’s monitoring overheads are
low and detect the bottleneck component with high accuracy.
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