
DL3: Adaptive Load Balancing for
Latency-critical Edge Cloud Applications

Prashanth P S
IIT Hyderabad

Ranjitha K
IIT Hyderabad

Ankit Sharma
IIT Hyderabad

Arjun Temura
IIIT Delhi

Rinku Shah
IIIT Delhi

Praveen Tammana
IIT Hyderabad

Abstract—On-premise edge cloud provides opportunities
to enable ML-based latency-critical services to resource-
constrained end devices. The edge services are deployed
as loosely coupled microservices using cloud orchestrators
like Kubernetes, and a load balancer distributes requests
from an upstream microservice instance (client) across
many downstream microservice instances (servers). How-
ever, in a shared environment, transient and sporadic
delay events are common due to contention for host and
network resources (e.g., high load on servers, high network
queuing delays). To meet low latency requirements of edge
services, the load balancer should quickly adapt to such
delay events and adjust routing decisions (e.g., pick the best
downstream instance among all). In this paper, we propose
DL3, a distributed load balancer (LB) that quickly adapts
to server load and network queuing delays by adjusting
routing decisions so that the requests are forwarded to the
best possible servers. The key idea is to enable LB with
visibility into both servers’ load and transient delays on
network paths toward the servers. We prototype DL3 on
a Kubernetes-managed edge cloud cluster and evaluated
its performance for a latency-sensitive ML-based object
detection service. Our preliminary results show that DL3

improves tail response time by 33% compared to the state-
of-the-art load balance mechanism.

I. INTRODUCTION

For compute and memory-constrained IoT devices, edge
cloud enables access to the latest and most powerful compute,
storage, and services deployed in the cloud [1], [2]. The
benefits include (1) high-speed responses for latency-sensitive
applications, (2) security and data privacy by processing sen-
sitive data locally, and (3) optimization of bandwidth between
edge and central cloud. This paper focuses on load balancing
problems at the edge cloud that degrade response time for
latency-critical applications. More specifically, we consider
latency-sensitive ML-based object detection service deployed
at the edge cloud, orchestrated by Kubernetes-Istio [3], [4],
for various IoT [1], [5], [6] and autonomous navigation [7]
applications; the end devices send video stream to the edge
cloud, and the object detection service responds with the
objects detected.

Service meshes (e.g., Istio [4]) provide a load balancer that
sits next to each microservice instance (client-side), intercepts
outgoing requests, and load balances the requests among

instances of the downstream service (server-side). A load
balancer (LB) at an upstream microservice instance (client)
aims to minimize the response time by quickly adapting to
dynamic events (e.g., high load on servers, high network de-
lays) and pick the best possible downstream instance (server)
among all the instances. To meet this objective, the client-
side LB should be aware of two types of information. First,
it should know the current aggregated load on all downstream
instances [8]–[10], that is, the current in-flight request count
at each downstream instance (sum of the number of active
requests from all upstream LBs). The server load information
helps LB to come up with better routing decisions. Second,
the LB should be aware of sporadic and transient delays on
network paths toward the downstream servers [11]–[14] so
that the LB routes requests to servers with path delay under
an acceptable limit and meet service-level agreement (SLA).

In this paper, we design DL3, a (D)istributed (L)oad
balancer with awareness on Network (L)atency and Server
(L)oad. Our key idea is to enable client LB with visibility
into two dynamic events: (1) server load at the application
layer and (2) transient delays on network paths toward the
servers. By doing so, LB has a view of the best of both worlds
and quickly adapts to dynamic events by routing requests to
the best possible servers while ensuring that the compute and
network resources are not underutilized. DL3’s design is based
on the principle that the best source of data on a server load
is the server itself, and the best source of data for network
delays is the client. DL3 provides this data to client-side LB; it
enhances server report-based layer-7 load-sharing mechanisms
with the status of network path delays observed by a client
instance at layer-4. DL3 tracks this data and provides a list of
healthy and unhealthy servers so that the client-side LB routes
requests to healthy servers and reduces tail response latency.

II. BACKGROUND AND MOTIVATION

ML-based object detection. In this paper, we focus on
ML-based object detection (yolo [15]) on video streams from
IoT devices (e.g., robots) with low-latency requirements (see
Fig. 1). In our experiment setup, one application container rep-
resents one IoT device, and each application container streams
video frames as HTTP requests. These requests are intercepted
by the sidecar (proxy) container’s LB which distributes the
requests among all downstream object detection servers (con-
tainers); these servers detect objects using GPU compute and
respond with object coordinates (bounding boxes).



Fig. 1: ML-based object detection
using compute at the edge cloud

Fig. 2: Local in-
flight request count
is misleading

Loadbalancing using P2C and least connections. Service
meshes like Istio [4] use envoy proxy as a sidecar. By default,
Istio uses the most popular least requests load balancing
policy [10], which randomly selects two healthy downstream
nodes using the power two choices (P2C) [16] and greedily
selects the node that has the least number of active requests
(Join the shortest queue) based on its local view. Join the
shortest queue (JSQ) in combination with P2C addresses the
herding problem of the least connection first approach [8].
Local load balancers’ view on in-flight request count can
be misleading. In a cluster of LBs, a single load balancer’s
local view (client-side) on a server’s in-flight request count
could differ from the actual request count (see Fig. 2) at the
server because the server gets requests from all clients’ load
balancers. To avoid this problem, an upstream node (client)
should know the aggregated load on each downstream node
(server) so that the upstream nodes’ LB routes requests to
a server with the least load. Otherwise, the load balancer
could overload the server. For instance, Fig. 2 illustrates a case
where server S2 is overloaded when client C1 tries to distribute
the load based on its local view, leaving S3 underutilized.
Network delays affect response time. A request from a client
pod to a server pod traverses multiple entities and network
components at the host level and data center network. The
entities include the request’s source node, the destination node,
and the underlying network (switches and routers). Within
each node, a request/response traverses multiple components
in the host network stack: NIC, root namespace, and con-
tainer namespace. Transient and sporadic delay events (e.g.
queuing delays) at any one or more of these components
inflate request completion time (RCT). Recent studies observe
that application-level RCTs do not meet the SLAs due to
packet-processing delays (10s-100s of millisecond) at these
components [11]–[14]. Since node resources are shared across
multiple tenants (containers), variable queuing delays are
observed due to unexpected CPU scheduling [12]–[14], head-
of-line (HOL) blocking [11], [13], slow read from the NIC
Rx buffer at the host level [12], policy enforcement as load
increases [17], [18], and server livelock [13], [19].
Local LBs lack a view on network delay events. The current
least connection approach at the client LB does not account
for such delay events on network paths toward servers before
routing requests. For instance, as shown in Fig. 3, consider
two downstream servers (S1 and S2), each with the same
local in-flight request count at the client LB (C1), and server
S2’s requests are experiencing network delays. When a new

Fig. 3: Local LB lacks view
on network delays

Fig. 4: P99 response
time increased signifi-
cantly (1.2x-14x) due to
transient delays in the
host network stack

request arrives at C1’s LB, routing the request to server S1
may process the request faster than S2 because S1 receives
request data without experiencing network delays. To avoid
this problem, the client LB should be aware of network delays
on paths toward servers and route requests to servers based on
their path delay status.

To understand the impact of network delays on response
time, we conduct an experiment on a Kubernetes cluster of
pods with Istio’s envoy proxy. The setup has 8 client pods and
8 server pods. We introduce synthetic network delays (using
Netem [20] tool) on up to four paths, one each towards four
servers. Fig. 4 shows 99 percentile response time without and
with delays. With a network delay of 80ms that lasts for 100ms
on one path, object detection response time is increased to
1.2x. It is 4x with delays on four paths toward four servers.
With 160ms queuing delay, P99 response time is increased
by 1.25x and 14x, respectively. This motivates the need for
a network delay-aware load balancer that quickly adapts to
dynamic delay events and picks the best server.

III. DESIGN

Our key idea is to enable client LB with visibility into two
dynamic events: (1) server load at the application layer and
(2) transient delays on network paths toward the servers. By
doing so, LB has a view of the best of both worlds and routes
requests to the best possible servers while ensuring that the
compute and network resources are not underutilized.

We consider the following design principle. The best source
of data on a server load is the server itself, and the best source
of data for network delays is the client.

A. Server shares the current load with clients

Monitoring. There are two ways to know servers’ load. First,
all downstream servers should be actively polled for their
current in-flight count. This is expensive for a large cluster
because it requires N LBs to poll M servers every few
milliseconds. Second, every server piggybacks the current load
to the response, and the client LB tracks the responses and
finds the servers’ load. In the second approach, client LBs are
more up-to-date when the request rate is high. We choose the
second approach because our object detection use case will



Fig. 5: DL3 system overview

have a continuous video stream (frames per second), so the
request rate is high.

As shown in Fig. 5, the server’s proxy intercepts HTTP
response and tags the current in-flight request count (load). We
configure the client proxy with the maximum number of active
requests (Tload)1 a server can handle to meet performance
SLOs. The proxy computes load based on the current in-flight
request count. On response arrival, a monitoring agent at client
LB parses the HTTP response, if the load < Tload, the agent
puts the server in the healthy list; otherwise, it puts the server
in the unhealthy list.
Retraction. To avoid underutilization of server resources, a
server in the unhealthy list should be moved to the healthy
list at the right time, that is, right after the load on the server
is below the threshold. we choose a proactive approach where
the client LB agent sends HTTP probe requests periodically to
the unhealthy servers and updates their status. This enables the
client LBs to be up-to-date on the load on unhealthy servers.
The probe rate is proportional to the number of unhealthy
servers at a single LB. Probes are sent to an unhealthy server
as long as it is overloaded. The probe overhead is generally
low when the requests are distributed well.

To keep probe overhead low, before sending the next probe,
the client LB agent waits for at least the average RCT times
the number of active requests (server load observed in the
previous probe) above the Tload. If the current load on an
unhealthy server is less than the Tload, it is moved to the
healthy list so that the client LB routes requests to the server.

B. Client LB monitors TCP RTT to understand network delays

RTT monitoring. To find network path delays, DL3 monitors
the weighted average RTT (RTTavg) of TCP packets of in-
flight requests. If the RTTavg of in-flight requests exceeds
TRTT

2, the associated server is moved to the unhealthy list;
this step avoids routing requests to servers with high network
delays, especially when the in-flight requests are in progress.
Despite the delays, the in-flight requests are not rerouted
to another server due to the costs involved in breaking the
existing connection at the current server and transferring the

1To find Tload for a service either profile service latencies using test traffic
or collect measurements for real traffic.

2To find TRTT for a service either profile delays using test probes or collect
RTT samples for real traffic.

already sent data to another server. However, the requests
that arrive at client LB during these network delay events are
routed to healthy servers, thus improving the response time.
RTTavg for every new RTT of a TCP packet is calculated
as RTTavg = (1-α) * (RTTavg) + α * RTTnew, where, α =
0.125.
Retraction. To avoid underutilizing available network band-
width and overloading healthy servers, servers in the unhealthy
list should be moved to the healthy list right after the delay
events fade away. We choose a combination of reactive and
proactive approaches to know the path’s status to an unhealthy
server. More specifically, if the in-flight request to an un-
healthy server is active, then RTTavg of TCP packets of this
request is used to understand the path status (reactive); this
avoids sending additional probe traffic to the unhealthy server,
especially if delay events fade away before completion of the
in-flight request. If the in-flight request finishes and the delay
events persist until the end, then we start probing the path
using TCP probes and monitor the RTTavg of these probes to
know the path status.

If RTTavg > TRTT , then it checks for the in-flight request
status, and if present, then probes are not initiated. Otherwise,
probes are sent periodically and whenever RTTavg is below
the threshold, the associated server is moved to the healthy
list.

C. Load balance requests

Upon receiving a request from an application container pod
(client), the LB in the sidecar proxy follows the P2C technique:
it randomly picks 2 servers from the healthy servers’ list and
routes the request to the one with the least in-flight request
count from its view.

IV. IMPLEMENTATION

We prototype DL3 using BLOC servicemesh [21] and
instrumented BLOC proxy with DL3. DL3 implementation
comprises two modules: 1) monitoring agent, and 2) retraction
agent. The monitoring agent tracks the server load carried in
an HTTP response and average RTT for in-flight requests.
Monitoring servers’ load: The proxy is instrumented with a
counter so that the number of active requests at the application
layer is tracked, and the counter value is tagged to the HTTP
response header. On receiving an HTTP response, the client-
side proxy parses the response header, removes the counter,
and forwards the HTTP response to the client pod.
Monitoring network delays: The proxy is instrumented with
an always-on RTT monitoring daemon process which uses
socket statistics(ss) utility that reads the average RTT of a TCP
connection (to a server) from the kernel. We have instrumented
the daemon process to read the average RTT value periodically
for every 2ms so that transient packet processing delay events
that last for 10s of milliseconds are captured. If there are no
ongoing requests to unhealthy servers, the client-side proxy
uses the hping utility to send periodic probe signals to the
server till the average RTT < TRTT .



(a) (b)

Fig. 6: DL3 response time is on par with LC when there
are no network delays.

V. PRELIMINARY EVALUATION

Our evaluation primarily aims to study the improvement
in response time by DL3 compared to LC in the presence of
network delays.

A. Experiment setup

We evaluate DL3 in a Kubernetes cluster with three bare
metal servers (one master node and two worker nodes) [22].
We deploy a Yolov5-based object detection service for au-
tonomous navigation applications as a two-layer service chain
with an 8:8 client-to-server pod ratio. We deploy Ubuntu pods
(client pods) to stream an offline video of vehicular traffic.
Server pods running the Yolov5 model perform the object
detection and return the detected object with its confidence
level. All pods in the cluster are deployed with BLOC [21]
proxy as a sidecar running the load balancing logic. We profile
the service and empirically fix the threshold value for request
count at 10 and RTT as 10ms.

B. Request response latency with DL3

We study the performance of DL3 by evaluating against
the Least Connections (LC) under two scenarios: (1) without
any network path delay (baseline case), and (2) with network
path delays. We send video frames from each client pod
as HTTP requests at 20FPS (frames per second) for 120
seconds asynchronously. To emulate a network delay event, we
synthetically inject queuing delays 80ms at one server pod’s
veth lasting for 200ms at a frequency of 12 faults per minute
using the Netem tool. We monitor the response time at client
pods and use the average, P99, and P9999 values of response
time as the evaluation metric.
Baseline results. Fig. 6a shows the average, P99, and P9999
response time and Fig. 6b shows CDF for LC and DL3 without
network delays (baseline case). From the results, we observe
that DL3’s load-balancing strategy works well and at par with
LC when there are no network delays on paths toward servers.
Comparison with the baseline. Fig. 7 shows the average,
P99, and P9999 response time for LC and DL3 with 80ms
network path delay lasting for 200ms. From the results, it is
worth noting that the average and P99 of LC and DL3 remain
almost similar to the values observed for the baseline case
(Fig. 6a). However, compared to the baseline case, the P9999

(a) 80ms delay lasting 200ms (b) 80ms delay lasting 200ms

Fig. 7: 33% improvement in P9999 response time of DL3

compared to LC when there are network delays

value of LC increased significantly by up to 50%, whereas
the DL3 P9999 response time observed a minimal increase
of 2%. This is because the LC LB technique at the client is
unaware of the transient (too short to react) network queuing
delays on the path towards a server and forwards subsequent
requests to the same server, so the requests end up waiting in
the network queue. DL3 handles this problem by leveraging
awareness on path delays, so it picks another server. Fig. 7b
shows the CDF for DL3 and LC with network delays. This
highlights the effectiveness of DL3’s load-balancing strategy.

VI. RELATED WORK

Load balancing with limited visibility. Load-balancing
strategies such as round robin [23], random [24], and P2C
[16] are widely used because of their simplicity, but they lack
a view on load and network delays, thus suffer from high
tail response latency. Prior works [8], [9], [25], [26] provide
LB with visibility over the server’s load. In [8], the in-flight
requests count is piggybacked from the server to the client. In
[9], the servers probabilistically piggyback confidence chips,
which indicates to the client that the server can handle more
requests. However, in the presence of transient and sporadic
delay events on network paths, they both suffer from high
tail response latency. Congestion control mechanisms [27],
[28] take inspiration from [29]–[31] and provide visibility
of network path status. These mechanisms enable clients to
quickly adapt by adjusting sending rates. But without visibility
on the server’s load, an LB can pick an overloaded server with
good network status, thus inflating response time.
Load balancing with visibility. [14] load balances requests
using RCT with Direct Server Return (DSR) in place. The
load on a server is approximated using the next triggered
request after the client receives the previous request’s response.
This approach works well for sequential requests, but with
asynchronous and parallel requests, the LB cannot assess the
server load until the next request arrives. Therefore, it is too
slow to react and ineffective as the load dynamics and path
status can change quickly.

VII. CONCLUSION AND FUTURE WORK

We propose DL3, a distributed load balancer for latency-
critical services deployed in the edge cloud. DL3 quickly
adapts to transient and sporadic delay events in the edge cloud



by adjusting layer-7 routing decisions. DL3 LB’s awareness
of servers’ load and network delays on paths toward servers
enables routing requests to the best possible servers and
improves response time. In our future work, we would like
to study the overheads introduced by DL3. We also plan to
compare DL3 with other approaches in the literature.

ACKNOWLEDGEMENT

We thank Yuvraj Makkena, K Shiv Kumar and Harish S A
for the helpful discussions and their valuable feedback on this
work. This work is supported by the TiHAN IIT Hyderabad,
ZF Technologies, National Security Council Secretariat, India.

REFERENCES

[1] Ajay Kumar Tanwani, Raghav Anand, Joseph E. Gonzalez, and Ken
Goldberg. Rilaas: Robot inference and learning as a service. IEEE
Robotics and Automation Letters, 2020.

[2] What is edge-cloud? https://www.vmware.com/topics/glossary/content/edge-
cloud.html.

[3] Kubernetes. https://kubernetes.io/.
[4] Istio. https://istio.io/.
[5] K. Hagiwara, Y. Li, and M. Sugaya. Weighted load balancing method

for heterogeneous clusters on hybrid clouds. In IEEE EDGE, 2023.
[6] HyunJong Lee, Shadi Noghabi, Brian Noble, Matthew Furlong, and

Landon P. Cox. Bumblebee: Application-aware adaptation for edge-
cloud orchestration. In IEEE/ACM SEC, 2022.

[7] Peter Schafhalter, Sukrit Kalra, Le Xu, Joseph E. Gonzalez, and Ion
Stoica. Leveraging cloud computing to make autonomous vehicles safer.
In IEEE/RSJ IROS, 2023.

[8] Mike Smith. Rethinking netflix’s edge load balancing, September 2018.
[9] Ratnadeep Bhattacharya and Timothy Wood. Bloc: Balancing load with

overload control in the microservices architecture. In IEEE ACSOS,
2022.

[10] Least requests. https://www.envoyproxy.io/docs/envoy
/v1.5.0/intro/arch overview/load balancing.

[11] Marek Majkowski. The story of one latency spike, November 2015.
[12] Theo Julienne. Debugging network stalls on kubernetes, November

2019.
[13] Roni Haecki, Radhika Niranjan Mysore, Lalith Suresh, Gerd Zellweger,

Bo Gan, and Timothy Merrifield et. al. How to diagnose nanosecond
network latencies in rich end-host stacks. In USENIX NSDI, 2022.

[14] Bhavana Vannarth Shobhana, Srinivas Narayana, and Badri Nath. Load
balancers need in-band feedback control. In ACM HotNets, 2022.

[15] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. In IEEE CVPR,
2016.

[16] Michael Mitzenmacher. Handbook of algorithms and data structures.
https://www.eecs.harvard.edu/ michaelm/postscripts/handbook2001.pdf,
2001. Accessed: 2024-07-01.

[17] Mrittika Ganguli, Sunku Ranganath, Subhiksha Ravisundar, Abhirupa
Layek, Dakshina Ilangovan, and Edwin Verplanke. Challenges and
opportunities in performance benchmarking of service mesh for the edge.
In IEEE EDGE, 2021.

[18] Xiangfeng Zhu, Guozhen She, Bowen Xue, Yu Zhang, Yongsu Zhang,
and Xuan Kelvin et. al. Zou. Dissecting overheads of service mesh
sidecars. In ACM SoCC, 2023.

[19] Jeffrey C Mogul and Kadangode K Ramakrishnan. Eliminating receive
livelock in an interrupt-driven kernel. ACM Transactions on Computer
Systems, 1997.

[20] Netem. https://srtlab.github.io/srt-cookbook/how-to-articles/using-
netem-to-emulate-networks.html.

[21] Bloc github. https://github.com/MSrvComm.
[22] Yuvraj Chowdary Makkena, PS Prashanth, Praveen Tammana, Praveen

Chandrahas, and Rajalakshmi Pachamuthu. Real-time object detection
as a service for ugvs using edge cloud. In IEEE COMSNETS.

[23] Round-robin. https://www.envoyproxy.io/docs/envoy/v1.5.0
/intro/arch overview/load balancing.

[24] Random. https://www.envoyproxy.io/docs/envoy/v1.5.0
/intro/arch overview/load balancing.

[25] Inho Cho, Ahmed Saeed, Joshua Fried, Seo Jin Park, Mohammad
Alizadeh, and Adam Belay. Overload control for µs-scale rpcs with
breakwater. In USENIX OSDI, 2020.

[26] Viyom Mittal, Shixiong Qi, Ratnadeep Bhattacharya, Xiaosu Lyu, Jun-
feng Li, and Sameer G. et. al. Kulkarni. Mu: An efficient, fair and
responsive serverless framework for resource-constrained edge clouds.
In ACM SoCC, 2021.

[27] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan
Wassel, and Monia et. al. Ghobadi. Timely: Rtt-based congestion control
for the datacenter. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, 2015.

[28] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, and
Lingbo et. al. Tang. Hpcc: high precision congestion control. In Pro-
ceedings of the ACM Special Interest Group on Data Communication,
2019.

[29] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. Tcp
vegas: new techniques for congestion detection and avoidance. In Con-
ference on Communications Architectures, Protocols and Applications,
1994.

[30] David X. Wei, Cheng Jin, Steven H. Low, and Sanjay Hegde. Fast
tcp: Motivation, architecture, algorithms, performance. IEEE/ACM
Transactions on Networking, 2006.

[31] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A compound tcp approach
for high-speed and long distance networks. In IEEE INFOCOM, 2006.


