
Anomaly Detection in In-Network
Fast ReRoute Systems

Divya Pathak, Harish S A, Sree Prathyush Chinta, Dilip Kumar Reddy, Praveen Tammana

Indian Institute of Technology Hyderabad, India

Abstract—High-speed programmable data planes provide op-
portunities to implement data-driven fast reroute systems that
quickly adapt to varying network conditions (e.g., congestion,
failures) and improve network performance. The core of these
systems has packet-processing algorithms running in the data
plane that continuously look for traffic patterns (e.g., too many
retransmissions) specific to a network condition (e.g., link failure)
and take appropriate action (e.g., reroute). Despite their benefits,
it also increases the potential attack surface. Adversaries can
generate malicious traffic patterns similar to those a fast reroute
system is looking for and trick the system. Doing so would lead
to poor network performance due to incorrect reroute decisions.

In this paper, we propose a mechanism to detect whether
the fast reroute systems are under the influence of malicious
traffic patterns. Our key idea is to model the expected behavior
using benign traffic features and use the model as a reference
to determine whether the system is under the influence of
adversaries. Using realistic attack traces, we demonstrate attacks
on two fast reroute systems and successfully detect those attacks
using the proposed detection mechanism.

I. INTRODUCTION

High-speed programmable data planes [1]–[3] coupled with
domain-specific programming languages (e.g., P4 [4]) have
emerged as promising building blocks for the development of
in-network applications [5]–[13]. The core of these in-network
applications has packet-processing algorithms designed to
run entirely in the data plane and make fast, precise, and
data-driven decisions to improve network performance. For
instance, a category of work [10]–[19] makes reroute or load
balance decisions on network traffic as a reaction to dynamic
network conditions such as link failures and congestion. We
call such in-network applications as Fast ReRoute systems
(FRR).

Packet-processing algorithms in FRR systems operate in
two phases: monitoring and control. During the monitoring
phase, the algorithm processes incoming packet headers and
maintains (or updates) a state across packets. In the control
phase, the algorithm checks for traffic patterns (e.g., many
TCP flows experiencing retransmissions) by analyzing the
state, infers associated network condition (e.g., downstream
link failure), and takes an appropriate decision (e.g., reroute a
prefix traffic to a backup path).

Though such novel FRR systems help to improve network
performance, they increase the attack surface and are hence
vulnerable to adversarial inputs not seen before. More specifi-
cally, an attacker can exploit the semantics of each phase and

craft adversarial inputs such that the FRR system’s decisions
are influenced and degrade the performance of a significant
portion of the traffic. Interestingly, to generate adversarial in-
puts, the attacker does need specific privileges: the attacker can
use compromised hosts to generate flows with crafted packet
headers with an objective of polluting the state maintained by
the FRR system. One approach to protect the FRR system state
is to authenticate traffic using cryptographic approaches [20].
However, the P4 data plane supports a limited set of operations
with no support for loops and recursions making it challenging
to run sophisticated cryptographic primitives in the data plane.

Our goal is to protect FRR systems from adversarial net-
work inputs. Towards this goal, in this paper, we propose a
mechanism to detect whether the state maintained by an FRR
system in the data plane is manipulated by adversaries. Our
approach is to gather features of traffic flows updating the state
and compare these features’ behavior under normal (benign)
conditions (expected behavior) with the behavior of features
observed at runtime. If the observed behavior significantly
deviates from the expected behavior, then alerts are raised to
help take appropriate action (e.g., redirect traffic to a deep
inspection system for further analysis).

There are two main challenges in realizing our approach.
First, it is hard to differentiate whether the data plane state is
manipulated by adversarial traffic or is updated by abnormal
traffic under benign network conditions (e.g., link failure,
congestion). To address this, while constructing the expected
behavior, we carefully incorporate features’ behavior under
various benign network conditions such that our detection
system can distinguish attacks from abnormal but benign
situations (more details in §IV). Second, due to limited data
plane resources and hardware constraints, it is crucial to
identify a small set of important traffic features (over many) to
be collected to capture actual (or observed) behavior without
compromising the detection accuracy. We address this by
carefully analyzing the detection accuracy of various features
and picking those features that give the best accuracy (more
details in §V).

The main contributions of this paper are as follows:
• We demonstrate attacks on two FRR systems: Blink [10]

and RouteScout delay monitor [12] (§III). Due to the lack
of attack datasets, we generate realistic attack traces by
interlacing attack traffic with original CAIDA traces [21]
so that traffic characteristics observed in a real network
can be preserved.ISBN 978-3-903176-63-8 © 2024 IFIP

Fast Reroute System

Network
Traffic

Infer from traffic state

Monitor Traffic

Reroute Traffic

A

Link / Node failure: too many retransmissions

Congestion: High syn-ack delays
B

C

Fig. 1. Phases in Fast Reroute (FRR) systems.

• We design and develop an anomaly detection mechanism1

that helps to determine whether the switch state is under
the influence of adversarial traffic (§IV).

• We perform experiments using realistic traces and demon-
strate the effectiveness of the proposed mechanism in
detecting attacks on the two FRR systems (§V).

II. BACKGROUND AND PROBLEM STATEMENT

Table I shows FRR systems built on top of high-speed
programmable data planes. The data plane maintains a state
that represents traffic characteristics of various network condi-
tions (e.g., normal, link failure, high path delays, congestion).
For instance, Blink’s [10] data plane processes TCP packet
headers to distinguish whether the incoming packet is original
or retransmitted and updates the number of flows (state)
experiencing retransmissions. Next, it periodically analyzes
the count, infers network conditions, and reroutes traffic if
necessary. In line with this FRR paradigm, RouteScout’s [12]
data plane maintains a time difference between TCP SYN-
ACK headers (state) and computes the associated next hop’s
average delay. Based on the delays observed for each next
hop, it adjusts traffic splitting among the hops.

In general, due to limited memory (100’s of MBs [22])
and a limited set of per-packet operations allowed in the
data plane [1], the design of FRR systems’ packet-processing
algorithms is constrained in several ways; hence, trust in-
coming packets without checking for discrepancies in their
header values. For instance, some high-speed switch targets
natively support unsecured hash functions like CRC32 using
which FRR systems compute 5-tuple hash. Also, to minimize
memory overheads, the FRR systems choose to monitor only
a small subset of traffic (or flows) and use the state of the
sampled traffic for making decisions. This is implemented
by using consecutive monitoring ranges [23], where a flow
is sampled only if its 5-tuple hash value falls within a specific
range.

Due to the data plane constraints, the attack surface in-
creases and makes FRR systems more vulnerable to adver-
sarial traffic. More specifically, an attacker may send crafted
flows with packet headers to manipulate the switch state and
influence the decisions of FRR systems. We argue protecting
the FRR systems from adversarial inputs is essential for them
to be deployed widely.

Many recent works [23]–[28] argue the need for securing
data plane systems against adversarial inputs. While these

1https://github.com/networked-systems-iith/FRR-Attacks

TABLE I
FASTREROUTE SYSTEMS AND THEIR STATE IN THE DATA PLANE

Reroute
decisions FRR systems State

Reroute traffic to
backup paths

Blink [10],
HULA [13]

Blink: The count of
flows experiencing

retransmissions,
HULA: Per-path delay

Load balance or
traffic splitting

RouteScout [12],
RCP [14],

SmartNIC-based
Load Balancers

[15], [16],
SmartLB [17],

Turbo [18],
RingLeader [19]

RouteScout: per-flow
SYN-ACK delay and

per-flow packet losses,
RCP, XCP: sending

rate & RTT,
SmartNIC-based Load

Balancers: one-way
packet delay

works identify vulnerabilities of diverse data-driven data plane
systems and discuss the potential attacks on these systems, this
paper focuses on vulnerabilities of FRR systems and detects
whether the systems’ are under the influence of adversaries.

III. ATTACKS ON FRR SYSTEMS

In this section, we define a threat model and present how
attackers can exploit vulnerabilities of two FRR systems, Blink
[10] and Routescout’s Delay Monitor [12], and influence their
fast reroute decisions.

A. Threat model

Attacker privileges. We consider an attacker at the host-
level or the Man-in-the-Middle (MitM)-level [29], [30] with
an ability to inject crafted packets into a network where FRR
systems are deployed.
Attack target. The attacker aims to target the state maintained
by FRR systems in the data plane to trick the FRR system and
influence reroute decisions. As a consequence, it would result
in poor QoS and DoS for legitimate users.
Attacker knowledge. We assume that the attacker possesses
knowledge of the packet-processing behavior and the state
maintained by the FRR systems, perhaps through their open-
source implementations [31], [32].

B. Possible attacks

1) Blink: Fast connectivity entirely in the data plane:
Blink [10] leverages TCP-induced signals to detect down-
stream link failures in the P4 data plane. Blink’s flow selector
logic samples up to 64 active TCP flows for a destination prefix
and maintains them in a register called flow selector. A flow
is considered active if the flow’s packet is observed within
a 2-second time window. It detects retransmission timeout
timer (RTO) induced retransmissions by storing the sum of
the sequence number and the payload length of the incoming
packet for each sampled flow. If the number of sampled flows
observing retransmissions exceeds a threshold (e.g., 32 or 50%
of sampled flows), Blink infers this as a link failure in the
network and reroutes associated prefix traffic to any one of
the available backup paths.
(A) Flow selector vulnerability. A TCP flow needs to be
active for a longer duration such that Blink samples the flow;

Algorithm 1 Blink (A1) Fast-release
1: F ← [F1, F2, ..., FM] {∥F∥= a% of ∥N∥ benign flows}
2: for each f in F do
3: SENDPACKET(f)
4: end for

Algorithm 2 Blink (A2) Gradual-release
1: F ← [F1, F2, ..., FM] {∥F∥= a% of ∥N∥ benign flows}
2: malicious flows← []
3: for every t seconds do
4: move x flows from F to malicious flows
5: for each f in malicious flows do
6: SENDPACKET(f)
7: end for
8: end for

an active flow consistently occupies an entry in the flow
selector register until a FIN packet is detected or a hard
reset timeout (8.5 mins) is triggered. If the sampled flows are
malicious, they can pollute the switch state and eventually
lead to incorrect reroute decisions. We consider this as a
vulnerability because an attacker can inject malicious flows
with an objective of making the majority of the flows sampled
as malicious.
(B) Attack strategy. The attacker sends packets within a 2-
second time window such that the associated flow is active and
occupies an entry in the flow selector register. Subsequently,
the attacker proceeds to imitate RTO-induced retransmissions
by repetitively sending the same packet. The success criterion
for the attack is defined as the percentage of sampled malicious
flows observing retransmissions exceeding 50%.

Attacker flow injection: For injecting malicious active TCP
flows, the attacker can opt for two strategies: (A1) fast-release
approach and (A2) gradual-release approach. The attacker uses
the A1 strategy for simultaneous transmission of all flows,
taking a more aggressive approach. On the other hand, the
A2 strategy is chosen when the attacker aims to be less
aggressive, strategically evading detection and requiring less
compute. In the fast-release approach, an attacker injects M
packets one each from M malicious flows where M is equal
to the a% of the number of benign flows (N) in a trace. This
attack approach is summarized in Algorithm 1. In the gradual-
release approach, the attacker introduces a slow buildup over
time; instead of all M packets at the same time, the attacker
introduces x malicious packets cumulatively out of M packets
for every t seconds. The attacker’s objective is to maximize
impact with minimal resources, that is, the values of (a, x, t)
should be small. This approach is summarized in Algorithm 2.
For both A1 and A2, at least one packet of an injected flow
is sent within 2 seconds so that the associated flow is active.
(C) Attack demonstration. We use real network traffic traces
from CAIDA [21], specifically, the 2018 dirA March equinix
nyc traces [33]. As Blink operates on a prefix basis, we filter
the CAIDA trace based on top-100 /24 prefixes.

TABLE II
ATTACK DETAILS. NR = NORMAL, TS = TRAFFIC SPIKES

Prefix
(/24)

Network
condition and

% of flows
experiencing

retransmissions

Avg.
pkts/
sec

TCP
flows

(a, x)
values
for A2

64.5.155 NR (1.5625) 65K 15K (1%, 3)
251.96.218 NR (3.75) 3K 8K (1%, 2)
135.79.171 TS (6.25) 12K 11K (1%, 2)
205.112.118 TS (7.8125) 4K 13K (0.7%, 2)
198.231.53 TS (9.375) 20K 6K (0.4%, 1)
205.139.35 TS (10.9375) 4K 2K (0.4%, 1)
250.178.65 TS (12.5) 2K 10K (0.2%, 1)
205.164.190 TS (14.065) 6K 9K (0.2%, 1)

Attack dataset: Due to the lack of a dedicated attack dataset
(traces), we generate realistic attack traces by interlacing attack
traffic with original CAIDA traces so the traffic characteristics
in a real network are preserved. We randomly select a% of
benign flows in the CAIDA trace as attack flows. From the
selected flows, we randomly pick packets and re-transmit them
by replaying at a randomly selected packets-per-second rate,
spanning from 0 to 2 seconds. This process ensures that the
flow remains active with retransmissions for a duration of 60
seconds which is the total duration of a CAIDA trace. Finally,
we interleave these malicious flows with the original (base)
benign trace using A1 and A2 strategies for 8 different prefixes
as illustrated in Table II.

As discussed earlier, we set t to 1 second and vary (a, x)
based on the network conditions observed in the base benign
trace. In our examination of over 500 prefixes in CAIDA
traces [21], we categorize prefix traces based on the percentage
of flows experiencing retransmissions. If the percentage falls
within the range (0− 5]%, we consider such trace as normal
(NR). Range (5 − 15]% represents traffic spikes (TS), that is
more retransmissions due to either packet loss or congestion.
Beyond 15% represents a potential indication of real link
failure (more details in §IV-A).
Attack results: (1) A1 strategy: From the experiments, we

observe attacker’s A1 strategy is unsuccessful, even for larger
values of a within the range of 2 to 32; a burst of a%
malicious flows in a small interval would not pollute flow
selector’s register because Blink packet sampling rate is very
low. (2) A2 strategy: On the other hand, using A2 strategy the
attacker succeeds with only a few malicious flows. Moreover,
this strategy is less aggressive and demands fewer computing
resources from the attacker. As shown in Figure 2, we observe
that for 64.5.155/24 prefix with only 1.5% of flows in the
trace experiencing retransmissions (normal), the attacker is
successful with x = 3 attack flows. That is, a total of 144
flows (close to 1% of benign flows in the trace) are sufficient to
pollute the flow selector’s register and successfully mislead the
fast reroute decisions in less than 50 seconds. The key insight
is that since malicious flows are active for a longer duration,
they get sampled over a while and successfully pollute the
flow selector’s register. From the second column in Table II, as
the percentage of flows experiencing retransmissions increases,

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60

C
u

m
u

la
ti

ve
 n

u
m

b
er

 o
f

at
ta

ck
 f

lo
w

s
in

je
ct

ed

Total duration (in seconds)

Attack success

Fig. 2. Successful attack on Blink with A2 strategy for 64.5.155/24 prefix
with a=1%

especially 9-14%, the attacker would need less effort (small a
and x) to successfully mimic a link failure and trick the Blink
system. This is because the network is already congested or
experiencing more packet losses, thus it becomes easier for the
attacker to trick the system by injecting less malicious traffic.

2) RouteScout: A performance-driven internet path selec-
tion entirely in the data plane: RouteScout [12] is a novel
software-hardware co-design for performance-aware routing
that runs at the edge of the network and independently controls
the traffic paths. More specifically, RouteScout’s delay monitor
logic in the data plane computes the per-hop average delay for
every epoch, and at the end of each epoch, if the percentage of
change in average delay among the next hops is greater than
some user-defined threshold, RouteScout changes the traffic
splitting percentage among the next hops as defined in the
network policy.

(A) Delay monitor vulnerability. For each next hop,
RouteScout’s delay monitor (DM) stores ingress timestamps of
all SYN packets, and when an ACK corresponding to a SYN
arrives, it calculates the difference between both timestamps
and adds the delay to the running sum. At the end of each
epoch, the per-hop average delay is calculated using the
sum and the number of SYN-ACK pairs. It considers only
those SYN-ACK pairs whose 5-tuple hash falls within the
monitoring subrange of a designated next-hop. However, the
per-hop state can be manipulated as the delay monitor logic
cannot differentiate between authentic and malicious SYN-
ACK pairs, potentially leading to performance degradation.
(B) Attack strategy. An attacker sends SYN-ACK pairs with
either very small or very high time gaps with the intent
to pollute a specific next hop’s average delay such that the
percentage of change in an epoch between two next hops
(say, A and B) exceeds the threshold (we consider 10%) [12].
More specifically, an attacker can use two approaches for
crafting malicious flows: (A1) batch-release and (A2) gradual-
release. In the batch-release approach, the attacker injects M
malicious SYN-ACKs where M is equal to a% of the total
benign SYN-ACKs (N) pairs in a real trace. All M malicious
SYN-ACKs are injected at once for every t seconds. In the
gradual-release approach, the attacker introduces x malicious
SYN-ACKs from M for every t seconds. Let y be the time
difference between crafted SYN and ACK. In A1, we use a
constant y for all SYN-ACK pairs, whereas in A2, we vary
y for each SYN-ACK pair. The strategies are summarised in

Algorithm 3 RouteScout’s DM (A1) Batch-release
1: F ← [F1, F2, ..., FM] {∥F∥ = a% of ∥N∥ benign SYN-

ACKs}
2: for every t second do
3: for each f in F do
4: SENDSYN(f)
5: WAIT(y)
6: SENDACK(f)
7: end for
8: end for

Algorithm 4 RouteScout’s DM (A2) Gradual-release
1: F ← [F1, F2, ..., FM] {∥F∥ = a% of ∥N∥ benign SYN-

ACKs}
2: y ← [RANDOM(min,max) for each Fi]
3: malicious pairs← []
4: for every t second do
5: move x SYN-ACKS from F to malicious pairs
6: for each f in malicious pairs do
7: SENDSYN(f)
8: WAIT(y)
9: SENDACK(f)

10: end for
11: end for

Algorithm 1 and 2, respectively. We assume that attacker is
aware of the avg RTT for a prefix and adjusts a and y to
maximize impact with less attack traffic.

(C) Attack demonstration. We use network traffic traces from
CAIDA [21], [33], specifically, the 2018 dirB March equinix
nyc CAIDA traces. RouteScoute operates on a prefix basis, so
we filter the CAIDA trace based on top-10 /16 prefixes.
Attack dataset: We interlace the crafted SYN-ACK pairs with
the original benign trace using A1 and A2 strategies. We
assume the attacker knows the target prefix’s average SYN-
ACK RTT either by monitoring the prefix’s trace or by
analyzing the public dataset. We vary y from 2 to 32 times
the average RTT (i.e., 2, 4, 8, 16, and 32). In A1, we fix y for
all SYN-ACK pairs and iterated through the list. In A2, y is
set to a value selected randomly between 2 to 32. We observe
that the attack is not successful when y is small (close to 0),
so we focus our discussion mainly on large y values.

Attack results: Table III show the results for A1 strategy. When
y = 2, the attacker is successful for different prefixes with a
value less than 2%. This means less than 2% of the benign
SYN-ACK pairs is sufficient to influence the RouteScout
splitting decisions. We observe as y increases from 2 to 32, the
attacker is successful for smaller a values (2 to 0.5). This is
because high SYN-ACK RTT delays (y) influence the average
delay much faster. Using the A2 strategy, we observe that the
attacker is successful when a is between 0.6 to 1.2% across
different prefixes.

TABLE III
ATTACKING DELAY MONITOR USING A1 STRATEGY WITH y = 2

Prefix
(/16)

Avg. # SYN-ACKS
per hop

a
value

213.175 1.1K 2%
213.173 1.5K 1.5%
239.213 1.4K 1.6%
239.213 1K 2%
213.179 1.8K 1.2%
49.97 1.3K 1.8%
41.246 1.4K 1.6%
213.187 1.1K 2%
76.177 1.2K 1.8%
213.184 1.5K 1.5%

Sampled
flows

Sampled
flows

FRR
Data Plane Switch state

Benign
traffic

Attack
traffic

Benign
traffic

Flow
features

Collector

Measure
deviation

Expected
distribution

Observed
distribution

Detection Phase

Learning PhaseA

B

Alert FRR

C

Fig. 3. Detection workflow

IV. ATTACK DETECTION

In this section, we present our anomaly detection approach
to detect whether the state maintained by an FRR system in
the data plane is manipulated by adversaries. We define ob-
jectives, pinpoint challenges, and then delve into our proposed
methodology.
Objective. Our objective is to detect (at runtime) potential
manipulation of the switch state by adversarial traffic before
a routing decision is initiated by the FRR system at runtime.
Doing so would enable the prevention of network performance
degradation.
Overview. Figure 3 shows the workflow of our detection
approach. It has three main phases:

• Expected distribution. We aim to gain a comprehensive
understanding of various traffic patterns associated with
benign network behavior. To do so, we collect benign
traffic features under various normal scenarios (conges-
tion, packet loss, and failures) and derive the expected
distribution from the traffic features.

• Observed distribution. At runtime, the collector gathers
traffic features with both benign and malicious flows and
constructs observed distribution.

• Measure deviation. We measure the deviation between
the expected distribution and the observed distribution
using a chi-squared test [34]. If the deviation crosses a
threshold, then alerts are generated.

Another alternative is to protect the switch state using
crypto-based authentication and key-sharing schemes. How-
ever, incorporating crypto-based schemes [20], [30], [35] in
the data plane is challenging in a high-speed programmable
switch like Tofino [1] due to a limited set of operations with

TABLE IV

Benign traffic
conditions

% of flows experiencing
retransmissions

prefixes (out
of 500)

Normal 0− 5 244
Traffic spikes 5− 15 201

Failure > 15 55

TABLE V
FLOW FEATURES EXPLORED FOR DETECTING ATTACKS

FRR Features Set of flows

Blink [10] FD, FS, IPT Sampled flows experiencing
retransmissions.

RouteScout’s
delay

monitor [12]
RTTd

Sampled flows with
SYN-ACK delay greater than

average RTT.

no support for loops and recursions which are in general
necessary for cryptographic primitives. Moreover, creating,
distributing, and managing secure keys between hosts and core
networks has practical challenges [35].

A. Benign traffic conditions

To realize our approach, one challenge is that for a given
switch state, it is hard to differentiate between whether it is
manipulated by adversarial inputs or it represents an abnormal
state under various benign network conditions (i.e., link fail-
ure, congestion). To address this, we build expected behavior
from feature characteristics of benign flows contributing to
the switch state under various benign network conditions.
This is based on the observation that at the switch level, the
visibility of most normal traffic is not available to the attacker.
Therefore, the characteristics of flow features derived from the
majority of normal traffic would not only help to distinguish
malicious behavior from normal but also make it hard for
the attacker to trick the detection system due to the lack of
visibility over the majority of normal traffic that the switch
has. We consider three benign network conditions, categorized
based on the percentage of flows experiencing retransmissions,
as shown in Table IV. We process over 500 prefixes (/24) in
CAIDA 2018 March traces [33] where each trace is of 60
seconds duration, and tag each prefix with normal, or traffic
spike (due to congestion or packet losses), or link failure (too
many flows experience retransmissions).

B. Characteristics of flow features

Due to limited data plane memory availability and strict
hardware constraints, it is important to keep the data plane
resource overheads low without compromising detection ac-
curacy. We achieve this in two ways. First, we identify a
small set of important per-flow features (e.g., Flow duration
(FD)2, Flow size (FS)3, SYN-ACK RTT4, packet counts, inter-

2It is characterized as the time duration that a flow is sampled in the
monitoring data structure of the respective FRR system (i.e., flow selector
in Blink, Accumulator in RouteScout).

3It is characterized as the number of bytes of a flow sampled by the
respective FRR system.

4The time gap between the SYN and ACK in a TCP session’s three-way
handshake.

arrival time (IAT)5) to be collected at run time such that the
characteristics of the selected flow features should accurately
distinguish whether the switch state used by the FRR systems
is manipulated by malicious flows or updated by benign
flows under various network conditions. Second, instead of
maintaining the selected features for all flows in the data
plane memory, we maintain only for those flows considered by
the respective FRR system. That is, for the Blink system, we
collect features of a small number of flows (64) sampled by the
flow selector. Similarly, for the Routescout system, we collect
features of those flows that fall in the monitoring subrange.
This way, we keep the switch data plane resource overheads
low without impacting detection accuracy.

Table V shows the flow features that we explored for
Blink and RouteScout systems. For distributions, we use both
individual features and a metric derived from a feature. For
instance, in RouteScout’s delay monitor, we use a metric
called RTT distance (RTTd) which is the difference between
the average per-hop SYN-ACK delay and individual flow’s
SYN-ACK delay. We observe FD for Blink and RTTd for
RouteScout’s delay monitor are giving high detection accuracy
(more details in §V-A).

In this paper, we identified the important flow features
and associated metrics after manually analyzing the accuracy
results. As part of our future work, we intend to automate
the extraction of k-best features using machine learning and
collect those features at runtime – this will enable the gen-
eralization of our detection mechanism for a wide range of
FRR systems. As mentioned earlier, the important features are
collected only for those flows monitored by the respective FRR
systems that influence the switch’s state. One could get these
features by adding a feature extraction plug-in to the existing
FRR system’s P4 code and executing the modified code in the
data plane (more details in §V).

C. Measure deviation

We build the expected distribution from the flow-level fea-
tures (Table V) of benign traffic (Table IV) collected at regular
intervals named epoch windows. For each epoch window, we
build the expected distribution (E). The range of possible
feature values (or metrics) is divided into n bins where each
bin is of size k. For example, consider the flow duration (FD)
feature. Here, binq denotes the flow duration falling within the
range of q to q ∗ k + 1 seconds. For a given window wi, the
expected distribution Ewi is defined as:

Ewi = (Ewi(1), Ewi(2), Ewi(3), ..., Ewi(n)) (1)

where Ewi(1), Ewi(2), ..., Ewi(n) denote the frequencies (or
count) corresponding to bins 1,2...n, respectively. Let Swi be
the total number of flows sampled by an FRR system in the
window, then:

Swi =

n∑
j=1

Ewi(j) (2)

5The time gap between two consecutive packets of a flow.

We collect Ewi and Swi for multiple epoch windows and
model probability for each bin to define the NULL hypothesis.
We define the NULL hypothesis in terms of the set given by:

M = (p1, p2, p3, ..., pn) (3)

where p1, p2, ..., pn denotes the probability corresponding
to bins 1,2...n. To be specific, if there are W windows, the
probability corresponding to each bin is defined as,

pj =

∑W
i=1 Ewi(j)∑W

i=1 Si

(4)

We use M as the expected distribution and use it as a reference
to validate an observed distribution in the detection phase.

More specifically, at runtime, for each epoch window we
collect features from the observed traffic which may or may
not have malicious flows interlaced. Formally, the observed
distribution Owi for the current window wi is defined as:

Owi = (Owi(1), Owi(2), Owi(3), ..., Owi(n)) (5)

and Swi be the total number of flows sampled by the FRR
system in this window, given by:

Swi =

n∑
j=1

Owi(j) (6)

We measure the deviation between the expected distribution
and the observed distribution using a chi-squared test [34].
The chi-squared test for independence compares two frequency
(M , and O) distributions to see if they are related. To be
specific, we define χ2

wi for the window wi as:

χ2
wi =

n∑
j=1

(Ewi(j)−Owi(j))
2

Ewi(j)
(7)

where expected frequency of bin j, Ewi(j) is defined as:

Ewi(j) = pj ∗ Swi (8)

A small χ2
wi denotes that the observed distribution fits well

as expected. A large value indicates a potential deviation
from the expected distributions. As the chi-square test is
highly dependent on the sample size S, we also consider
employing sample-specific probabilities. For each sample size
range (r,R], we derive probabilities (pr) specific to that range.

D. Implementation and other approaches.
In this paper, we detect anomalies by performing a statistical

analysis of flow features at the control plane. This approach
keeps the data plane overheads low but at the cost of data-
plane and control-plane communication overhead and feature
processing overheads. As a potential future work, one could
analyze the features at line rate by adopting the quantization
techniques [28] designed to run entirely in the data plane. Al-
ternatively to the proposed statistical analysis-based approach,
one could explore machine learning-based traffic analysis [36],
[37] using Isolation forest, autoencoders, or support vector
machines (SVMs). However, realizing ML-based approaches
in the data plane becomes more challenging due to computing
and memory constraints.

V. EVALUATION

Our main goal for evaluation is to study the following two
questions. Q1: Which flow features (or associated metrics)
of an FRR system enable the detection of attacks accurately
with minimal false positives? Q2: Is our detection approach
able to detect attacks before the attacker is successful, that is,
before rerouting traffic? We choose two systems, Blink and
RouteScout, for analysis because their switch state is updated
by two different traffic characteristics; Blink updates based on
header field values, whereas RouteScout relies on packet-delay
statistics. We could extend the proposed approach towards the
generalization by evaluating other FRR systems that broadly
depend on these two traffic characteristics.

A. Identification of flow features

As outlined in §IV-B and Table V, we analyze the accuracy
results of various flow features for an FRR system and pick
those giving the best accuracy. For the Blink system, we
analyze flow duration feature for more than 500 (/24) prefixes
and found that the majority of the flows experiencing retrans-
missions under normal network conditions have flow duration
ranging between 8 and 12 seconds (as shown in Figure 4(a)).
For the attack to be successful, the malicious flows must be
active for a longer duration (more than 12 seconds) so that they
get sampled and pollute the flow selector’s state. This means
a significant deviation in flow duration distribution of flows
in the attack scenario and the normal scenarios. Based on this
observation, we pick flow duration as a feature to collect at
runtime and construct the expected distribution. We did not
find such trends for other features (flow size and IPT). Hence,
we chose to collect the flow duration (FD) feature only for
those sampled flows experiencing retransmissions.

Similarly, for the Routescout system, we analyze SYN-ACK
delays of top-20 /16 prefixes and found that flows with SYN-
ACK RTT delay either greater or close to the average delay
would significantly influence the average delay. As shown
in Figure 4(b), 99.9% of flows monitored for next-hops A and
B are less than the average delay, but with less influence on
the average delay. However, the 0.1% flows that are above the
average delay have more influence on the delay, thus the delays
of these flows play a major role and cause the delay difference
between a pair of next hops to exceed the threshold (i.e.,
10%). To understand this influence, we define a derived feature
named RTT distance (RTTd) to capture the distance between
a flow’s SYN-ACK delay and the average delay. Figure 4(c)
shows the distribution of the RTTd feature for those flows with
greater than average delay. Our key observation is that most of
the 0.1% benign flows with SYN-ACK delay above average
have RTTd between 0 and 1 (falls in bin0) i.e., they are very
close to the average. For an attack to succeed, the malicious
flows should have bigger RTTd, that is away from the average,
starting from bin1 and beyond. Based on this observation,
we choose the RTTd feature for the Routescout FRR system.
Dataset for expected distribution: As explained in (§IV-C),
we compute probabilities (p) for each bin’s associated flow

feature (i.e., FD for Blink and RTTd for RouteScout).
Blink: We collect FD of sampled flows experiencing re-
transmissions for top-10 benign CAIDA prefix(/24) traces
under failure category (Table IV). The data is collected for
every 0.6 seconds (shorter than Blink’s epoch window, 0.8
seconds). We observe that there are 110 windows with > 15%
of flows experiencing transmissions. The FD feature range
is divided into 10 bins, each of size 6 seconds. Each bin
can be represented as: bini= {FD falls between (i, (i*6)+1]
seconds}. p in eq. 3 is derived from the data for 110 windows.
RouteScout: For the RouteScout system, from the top-10 be-
nign CAIDA prefix(/16) traces, we obtain 850 windows with
average delay difference between a pair of next hops exceeding
10%. RTTd value range is divided into 10 bins, each of
size 1 second. Each bin is represented as: bini= {RTTd

from average delay falls in (i, i+1] seconds}. We derive p for
each of these bins using the data of 850 windows.
Testing dataset: We test the computed probabilities (p) using
the dataset for two traffic scenarios: Case 1: Benign traffic
without attacker flows; and Case 2: A small number of
malicious flows interlaced with a large number of benign flows
using the strategies outlined in §III. For case 1, the Blink
dataset includes 28 prefix traces, with 8 falling under the
normal category, 10 under traffic spikes, and 10 under failures.
For case 2, we generated 8 traces. For Routescout, case 1
comprises 27 prefix traces, and case 2 has 8 base prefixes (as
mentioned in Table III) which we interlaced malicious flows
using A1 and A2 strategies totalling to 48 traces.

B. Detection accuracy

We measure accuracy in terms of false positive rate (FPR)
and false negative rate (FNR). FPR represents the proportion
of normal windows that are incorrectly predicted as attack,
and FNR represents the proportion of attack windows that are
incorrectly predicted as normal. To our knowledge, there is no
other work that we should consider for comparing the accuracy
of the proposed approach.

We emphasize that Blink’s mechanism operates on a time-
series basis, where feature value in a time window is cumula-
tively aggregated with its preceding consecutive windows. In
contrast, Routescout does not depend on consecutive windows,
as flows get reset periodically. Consequently, when labeling
windows as either benign (0) or attack (1), we follow two
different approaches one for each system. For case 1, in both
Blink and Routescout datasets, all windows are labeled as
benign (0). However, for case 2 in Blink, windows are labeled
as benign (0) when the flow selector’s register has no attack
flows, and as an attack (1) if malicious flows are sampled until
the attack is successful. For case 2 in Routescout, benign (0)
is assigned if the attack is unsuccessful, and attack (1) if the
attack is successful. The chi-square threshold is derived using
the standard chi-square distribution table [34].

1) Blink results: The distributions for benign traffic are
illustrated in Figure 5, where Figure 5(a) represents observa-
tions for the normal category, Figure 5(b) for traffic spikes,
and Figure 5(c) for failures. The X-axis shows epoch windows

0

200

400

600

0 2 4 6 8 10 12 14 16 18

Fl
o

w
 c

o
u

n
t

Flow duration (in seconds)

(a) Most of the normal flows with retransmissions
have flow duration between 8-12 sec.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

C
D

F

SYN-ACK RTT delay (in seconds)

Delays for next-hop A

Delays for next-hop B
Avg RTT A (0.300 sec)
Avg RTT B (0.331 sec)

(b) CDF of SYN-ACK delays for a prefix with >
10% difference in average delays of hop A and B.

0

20

40

60

0 1 2 3 4 5 6 7 8 9

SY
N

-A
C

K
 c

o
u

n
t

RTTd

(c) RTTd distribution for flows above average
delay

Fig. 4. Benign traffic analysis for identifying important flow features

0

0.25

0.5

0.75

1

1.25

1.5

1.75

0 20 40 60 80 100

C
h

i-
sq

u
ar

ed
 v

al
u

e

Epoch window

Observed Distribution
Chi-squared critical value

(a) Normal

0

0.25

0.5

0.75

1

1.25

1.5

1.75

0 20 40 60 80 100

C
h

i-
sq

u
ar

ed
 v

al
u

e

Epoch window

Observed Distribution
Chi-squared critical value

(b) Traffic spikes

0

0.25

0.5

0.75

1

1.25

1.5

1.75

0 20 40 60 80 100

C
h

i-
sq

u
ar

ed
 v

al
u

e

Epoch window

Observed Distribution

Failure windows
Chi-squared critical value

(c) Link failures
Fig. 5. Blink: The chi-square value for the observed traffic under various benign network conditions is below the threshold. The windows with traffic spikes
and link failures are classified as benign.

0

2

4

6

8

10

12

0 20 40 60 80 100

C
h

i-
sq

u
ar

ed
 v

al
u

e

Epoch window

Observed Distribution

Attack start

Attack success

Chi-squared critical value

(a) Normal and attack traffic

0
2
4
6
8

10
12
14
16

0 20 40 60 80 100

C
h

i-
sq

u
ar

ed
 v

al
u

e

Epoch window

Observed Distribution

Attack start
Attack success

Chi-squared critical value

(b) Traffic spikes and attack traffic

0

2

4

6

8

10

0 20 40 60 80 100

C
h

i-
sq

u
ar

ed
 v

al
u

e

Epoch window

Observed Distribution

Attack start Attack success

Chi-squared critical value

(c) Link failure and attack traffic
Fig. 6. Blink: The chi-square value for the observed traffic exceeds the chi-square threshold before the attack is successful.

each of 0.6 seconds, and the Y-axis represents the χ2 value of
each window. Notably, χ2

wi of the observed traffic aligns well
when attack traffic is not present, consistently falling below the
standard threshold values [34]. In case 2, as shown in Figure 6,
deviations in χ2

wi from the threshold become apparent as the
attack initiates, signifying the ability to distinguish attacks
from various benign network conditions. From the Figure 6,
it is evident that we detect attacks at an early stage before the
attacker is successful (Q2). Furthermore, in case 1, among the
2800 benign (0) windows, we observe an FPR of 0.003. In
case 2, among 200 (0) and 600 (1) windows, an FPR of 0.001
and an FNR of 0 are observed, respectively.

2) RouteScout results: For case 1, among the 1456 benign
windows, we observe an FPR of 0.006. For case 2, chi-squared
test considering all 10 bins, initially we observe high FNR
at lower delays (i.e., 2 times and 4 times the avg. RTT for
A1), although we get 0 FNR for higher delays (8, 16 and
32 times the avg. RTT for both A1 and A2 strategy). This
is because attack SYN-ACK pairs have delays very close to
the average (bin0), mimicking normal behavior and thus hard
to distinguish. To address this challenge, we further subdivide
bin0 into sub-bins and learn expected probabilities. This extra
step results in an FNR of 0 for lower delay values (Table VI).

TABLE VI
ROUTESCOUT RESULTS WITH MODIFIED CHI-SQUARED TEST

Attack
strategy

Delay set to
y times avg.
SYN-ACK

RTT

a%
range:

(a min,
a max)

Misclassification rate

FPR FNR

A1

2 (1.2, 2) 0.01 0
4 (1.5, 1.8) 0.01 0
8 (1.2, 1.5) 0 0
16 (0.9, 1.1) 0 0
32 (0.3, 0.8) 0 0

A2 [2 to 32] (0.6, 1.2) 0.01 0

VI. RELATED WORK

Prior work [23]–[27], [38] motivates the need for secur-
ing data plane systems from adversarial inputs. This paper
complements these efforts by focusing on possible attacks on
Fast Reroute data plane systems. A recent work [39], [40]
does adversarial testing by proposing a probabilistic program
profiler based on symbolic execution and model counting. In
contrast, we model the probability distribution of flow-level
features, enabling deviation checks at runtime. Our approach
complements such offline profilers, as we can explore potential
corner cases and flow features at run-time not covered by
offline profilers. A line of research work [41]–[43] focuses
on verifying P4 program properties using static analysis or

symbolic execution techniques. In constrast, we focus on the
detection of attacks on P4-based FRR systems at runtime.
Our anomaly detection approach is inspired from [26]–[28],
[44]. Increasingly, the focus has shifted to collecting flow
feature statistics entirely in the data plane. These efforts
are directed towards enhancing anomaly detection capabilities
using statistical and machine learning techniques.

VII. CONCLUSION AND FUTURE WORK

In this paper, we demonstrate attacks on two FRR systems
using realistic traces. We propose a mechanism to detect such
attacks on fast reroute systems. Through experiments using
realistic traces, we show the effectiveness of the proposed
mechanism in detecting attacks. In our future work, we plan
to (1) generalize by automatically identifying important top-k
features specific to an FRR system; (2) detect attacks entirely
in the data plane such that the feature collection and processing
overheads in the control plane can be minimized; (3) extend
and evaluate our detection mechanism against other FRR
systems; and (4) implement the detection mechanism on a
programmable network device and study the overheads.

ACKNOWLEDGEMENT

This work is supported by the National Security Council
Secretariat, India, TiHAN IIT Hyderabad, and the Prime
Minister’s Research Fellowship program, India.

REFERENCES

[1] Open-Tofino. [Online]. Available:
https://github.com/barefootnetworks/Open-Tofino/tree/master

[2] Netronome Agilio CX SmartNICs. [Online]. Available:
https://www.netronome.com/products/agilio-cx/

[3] NVIDIA BlueField DPUs. [Online]. Available:
https://www.nvidia.com/en-in/networking/products/data-processing-unit/

[4] P4-16 Language Specification. [Online]. Available: https://p4.org/p4-
spec/docs/P4-16-v1.2.2.html

[5] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica,
“Netcache: Balancing key-value stores with fast in-network caching,” in
ACM SOSP, 2017.

[6] G. Li, M. Zhang, C. Liu, X. Kong, A. Chen, G. Gu, and H. Duan,
“Nethcf: Enabling line-rate and adaptive spoofed ip traffic filtering,” in
IEEE ICNP, 2019.

[7] J. Xing, Q. Kang, and A. Chen, “Netwarden: Mitigating network covert
channels while preserving performance,” in USENIX Security, 2020.

[8] K.-F. Hsu, R. Beckett, A. Chen, J. Rexford, and D. Walker, “Contra:
A programmable system for performance-aware routing,” in USENIX
NSDI, 2020.

[9] Y. Li, R. Miao, C. Kim, and M. Yu, “Flowradar: A better netflow for
data centers,” in USENIX NSDI, 2016.

[10] T. Holterbach, E. C. Molero, M. Apostolaki, A. Dainotti, S. Vissicchio,
and L. Vanbever, “Blink: Fast connectivity recovery entirely in the data
plane,” in USENIX NSDI, 2019.

[11] H. Birge-Lee, M. Apostolaki, and J. Rexford, “It takes two to tango:
cooperative edge-to-edge routing,” in ACM Workshop on HotNets, 2022.

[12] M. Apostolaki, A. Singla, and L. Vanbever, “Performance-driven internet
path selection,” in ACM SIGCOMM SOSR, 2021.

[13] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “Hula:
Scalable load balancing using programmable data planes,” in ACM
SOSR, 2016.

[14] N. K. Sharma, A. Kaufmann, T. Anderson, A. Krishnamurthy, J. Nelson,
and S. Peter, “Evaluating the power of flexible packet processing for
network resource allocation,” in USENIX NSDI, 2017.

[15] K. Holzinger, F. Biersack, H. Stubbe, A. G. Mariño, A. Kane, F. Fons,
Z. Haigang, T. Wild, A. Herkersdorf, and G. Carle, “Smartnic-based
load management and network health monitoring for time sensitive
applications,” in IEEE/IFIP NOMS, 2022.

[16] T. Cui, W. Zhang, K. Zhang, and A. Krishnamurthy, “Offloading load
balancers onto smartnics,” in ACM SIGOPS, 2021.

[17] Z. Ni, C. Wei, T. Wood, and N. Choi, “A smartnic-based load balancing
and auto scaling framework for middlebox edge server,” in IEEE NFV-
SDN, 2021.

[18] H. Seyedroudbari, S. Vanavasam, and A. Daglis, “Turbo: Smartnic-
enabled dynamic load balancing of µs-scale rpcs,” in IEEE HPCA, 2023.

[19] J. Lin, A. Cardoza, T. Khan, Y. Ro, B. E. Stephens, H. Wassel,
and A. Akella, “{RingLeader}: Efficiently offloading {Intra-Server}
orchestration to {NICs},” in USENIX NSDI, 2023.

[20] S. Yoo and X. Chen, “Secure keyed hashing on programmable switches,”
in ACM SIGCOMM Workshop on SPIN, 2021.

[21] CAIDA Macroscopic Internet Topology Data Kit. [Online]. Available:
https://www.caida.org/data/internet-topology-data-kit

[22] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making stateful
layer-4 load balancing fast and cheap using switching asics,” in ACM
SIGCOMM, 2017.

[23] L. Wang, P. Mittal, and J. Rexford, “Data-plane security applications
in adversarial settings,” ACM SIGCOMM Computer Communication
Review, 2022.

[24] R. Meier, T. Holterbach, S. Keck, M. Stähli, V. Lenders, A. Singla, and
L. Vanbever, “(self) driving under the influence: Intoxicating adversarial
network inputs,” in ACM Workshop on HotNets, 2019.

[25] H. SA, K. S. Kumar, A. Majee, A. Bedarakota, P. Tammana, P. G.
Kannan, and R. Shah, “In-network probabilistic monitoring primitives
under the influence of adversarial network inputs,” in APNet, 2023.

[26] A. Sanghi, K. P. Kadiyala, P. Tammana, and S. Joshi, “Anomaly
detection in data plane systems using packet execution paths,” in ACM
SIGCOMM workshop on SPIN, 2021.

[27] S. Gao, M. Handley, and S. Vissicchio, “Stats 101 in p4: towards in-
switch anomaly detection,” in ACM workshop on HotNets, 2021.

[28] D. Barradas, N. Santos, L. Rodrigues, S. Signorello, F. M. Ramos, and
A. Madeira, “Flowlens: Enabling efficient flow classification for ml-
based network security applications.” in NDSS, 2021.

[29] H. Liu, X. Chen, Y. Shen, Q. Huang, Z. Zhou, D. Zhang, and
C. Wu, “Vulnerabilities and attacks of inter-device coordination in
programmable networks,” in 2023 IEEE/ACM IWQoS, 2023.

[30] D. Kong, Z. Zhou, Y. Shen, X. Chen, Q. Cheng, D. Zhang, and C. Wu,
“In-band network telemetry manipulation attacks and countermeasures
in programmable networks,” in IEEE/ACM IWQoS, 2023.

[31] Blink’s github repository. [Online]. Available: https://github.com/nsg-
ethz/Blink

[32] RingLeader’s github repository. [Online]. Available:
https://github.com/utnslab/RingleaderNIC

[33] CAIDA Datasets. [Online]. Available:
https://www.caida.org/catalog/datasets/passive dataset/

[34] (2023) Chi-squared test. [Online]. Available:
https://en.wikipedia.org/wiki/Chi-squared test

[35] I. Oliveira, E. Neto, R. Immich, R. Fontes, A. Neto, F. Rodriguez, and
C. E. Rothenberg, “Dh-aes-p4: on-premise encryption and in-band key-
exchange in p4 fully programmable data planes,” in IEEE NFV-SDN,
2021.

[36] G. Zhou, Z. Liu, C. Fu, Q. Li, and K. Xu, “An efficient design of
intelligent network data plane,” in USENIX Security, 2023.

[37] A. T.-J. Akem, B. Bütün, M. Gucciardo, M. Fiore et al., “Jewel:
Resource-efficient joint packet and flow level inference in programmable
switches,” in IEEE INFOCOM, 2024.

[38] C. Black and S. Scott-Hayward, “Adversarial exploitation of p4 data
planes,” in 2021 IFIP/IEEE IM, 2021.

[39] Q. Kang, J. Xing, and A. Chen, “Automated attack discovery in data
plane systems.” in USENIX Security, 2019.

[40] Q. Kang, J. Xing, Y. Qiu, and A. Chen, “Probabilistic profiling of stateful
data planes for adversarial testing,” in ACM ASPLOS, 2021.

[41] J. Liu, W. Hallahan, C. Schlesinger, M. Sharif, J. Lee, R. Soulé,
H. Wang, C. Caşcaval, N. McKeown, and N. Foster, “P4v: Practical
verification for programmable data planes,” in ACM SIGCOMM, 2018.

[42] A. Nötzli, J. Khan, A. Fingerhut, C. Barrett, and P. Athanas, “P4pktgen:
Automated test case generation for p4 programs,” in ACM SOSR, 2018.

[43] R. Stoenescu, D. Dumitrescu, M. Popovici, L. Negreanu, and C. Raiciu,
“Debugging p4 programs with vera,” in ACM SIGCOMM, 2018.

[44] G. Zhou, Z. Liu, C. Fu, Q. Li, and K. Xu, “An efficient design of
intelligent network data plane,” in USENIX Security, 2023.

