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Abstract
Deploying machine learning (ML) models in programmable switch
data planes facilitates low latency and high throughput traffic infer-
ence at line speed. However, data planes pose significant constraints
due to the limited memory and minimal support for mathematical
operations and data types. As a result, the only unsupervised ML
models implemented in data planes to date are Isolation Forests
(iForests). However, conventional iForest models yield suboptimal
malicious traffic detection performance in various traffic use cases.
To address this limitation, this paper proposes iGuard , the first
iForest implementation that can accurately detect malicious traffic
by incorporating the "knowledge" of more powerful autoencoders.
We deploy iGuard in the form of a small set of whitelist rules that
could be easily installed in the switch data planes. We implement
iGuard using the P4 language, and assess its performance in an
experimental platform based on Intel Tofino switches. Upon eval-
uating iGuard on various attack traffic use cases, our model can
improve accuracy up to 48.3% while maintaining a similar or lower
switch memory footprint over previous approaches to implement
iForest models in real-world equipment.

CCS Concepts
• Security and privacy→ Intrusion/anomaly detection and
malware mitigation; Network security; • Computing method-
ologies→Machine learning.
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1 Introduction
The emergence of programmable switches (e.g., P4 switches [1, 9])
has introduced a new research direction aimed at low-latency
and high-throughput (line-speed) traffic classification using ma-
chine learning (ML) models. Programmable switch data planes can
achieve significantly higher throughput, faster packet forwarding
rates, and lower latency than control planes while maintaining
similar infrastructure and maintenance costs [15, 27]. However,
they pose several constraints [9] due to limited switch memory
[12, 25] and per-packet operations [29, 31, 32]. As a result, com-
plex ML models (e.g., neural networks, autoencoders [20]) cannot
be implemented, and only decision-tree-based models have been
successfully deployed in these data planes.

Many works [2, 3, 10, 13, 17, 18, 21, 34–36, 39–44] have utilized
decision tree-based supervised ML models in programmable switch
data planes to detect malicious traffic (network attacks). However,
supervised methods assume the presence of labeled datasets, which
are costly and impractical for real-world deployment [6]. Addi-
tionally, these methods struggle to detect unseen attacks [15, 26],
suffer from concept drift of anomalous samples [22], and require
large-scale anomaly datasets, which are difficult to obtain [5–7]. Un-
supervised ML methods, which only require normal datasets, offer
a potential solution as they are more readily available in real-world
scenarios [7].

To the best of our knowledge, the only work that has imple-
mented unsupervised iForest models in programmable switch data
planes is [15]. However, iForest is insufficient for high-performance
malicious traffic detection across various attack scenarios (§3.1).
This is because benign and malicious samples often end up in the
same or nearby leaf nodes, making it challenging for iForest to dis-
tinguish between them using expected path lengths across different
iTrees (§3.1).

To address the above limitation, we propose iGuard, an iFor-
est model-based design that accurately detects malicious traffic at
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Figure 1: Overview of iGuard

line speed across various attack traffic use cases. Our approach
incorporates knowledge of a trained ensemble of autoencoders1
to train an iForest such that the autoencoders learn to distinguish
malicious samples from benign samples generated at leaf nodes
(autoencoder-guided iForest training, §3.2.1). Next, we propose a
knowledge distillation (§3.2.2) scheme to transfer knowledge of
autoencoders into the trained iForest. This involves embedding
reconstruction errors from autoencoders into iForest to label each
leaf node, and the final prediction for a test sample is determined by
a majority vote across all iTrees. Finally, we convert our designed
iForest model into a set of whitelist rules (generally a small set) that
can be installed on the target switch (§3.2.3).

In short, the main contributions of our paper are as follows,
• We present a novel iForest model (iGuard ) that accurately
detects malicious traffic in the data plane at line speed. This
model design is achieved through autoencoder-guided train-
ing (§3.2.1), knowledge distillation from autoencoders to
trained iForest (§3.2.2), and conversion of iForest to a small
set of whitelist rules that can be installed on target switch
(§3.2.3).
• We clarify the challenges of implementing iGuard on Intel’s
Tofino switch and developing a working prototype2 (§3.3).
• We extensively evaluate iGuard in a real-world testbed, re-
vealing iGuard’s increasing accuracy gains over previous
implementations of iForest models [15] on various attack
datasets [8, 14, 15, 23, 26] and normal datasets [15, 30] while
maintaining similar or lower switch memory footprint (§4).

2 Overview of iGuard
iGuard is a novel design of switch-tailored iForest deployed entirely
in the data plane (i.e., programmable switches). Further, iGuard is
an efficient design of iForest to accurately detect malicious traffic
at line speed. We present the overview of iGuard in Fig. 1.
Control plane.Using PCAP traces in the training dataset of benign
traffic, we extract flow-level (FL) features3 (1). Using the extracted
FL features, we train an ensemble of autoencoders (e.g., [15, 26]) as
shown in (2) of Fig. 1. We then use these trained autoencoders to
guide the training of the iForest model (3) and perform knowledge
distillation from an ensemble of autoencoders into the trained iFor-
est (4). Finally, as shown in (5), the trained and knowledge-distilled

1We can show that autoencoders are best candidates for guiding iForest models to
achieve higher detection accuracy (§4)
2https://github.com/networked-systems-iith/iGuard
3FL feature extraction mechanism in control plane and data plane is already covered
in prior arts [3, 15, 37, 44]. We follow in these footsteps.

iForest is converted into a small set of whitelist rules4 and installed
on the target switch data plane (6). For details, see §3.2.
Data plane. This module first matches the incoming packet’s
flow_ID (5-tuple) in the blacklist match rules table. If matched,
it can drop the malicious packets or forward them to the desired
port (7). Then the module extracts FL features from the incom-
ing packets using the flow-level feature extractor [2, 15, 44] (8).
The extracted FL features are matched with whitelist rules at a
timeout or flow’s per-packet count threshold (9). Regardless of the
match, a digest is sent to the controller in the control plane (10a),
and the controller can then install a blacklist rule (10b) for a ma-
licious flow_ID. If there is a match, then FL features are added to
the incoming packet’s metadata (10c), and the packet’s payload
is truncated and mirrored to the control plane (11). FL features
from benign traffic may be used to update the whitelist rules table.
Finally, the packet is sent to the egress port as shown in (12).
3 iGuard System Design
3.1 Motivation
We motivate iGuard by demonstrating the inefficiency of conven-
tional iForest models when detecting malicious traffic.

iForest obtains a label (malicious or benign) using the anomaly
score of test sample 𝑥 as 𝑙𝑎𝑏𝑒𝑙 = 1{𝑠𝑐𝑜𝑟𝑒 (𝑥) < 𝜏} (1 for anomaly),
𝜏 > 0, and score(x) is the anomaly score5 of 𝑥 obtained using
expected path length [24].We show that iForest cannot distinguish
malicious samples from benign ones using expected path lengths.

We consider 15 different attacks from attack datasets [8, 14, 15,
23, 26]. FL features considered are the same as that of Magnifier
[15]. We divide benign traffic dataset [15] into training and test sets
(as shown in [15]). The training set is then divided into training and
validation (4:1) sets, and we further add 20% of attack traffic to the
validation set and test set (one attack added at a time, meaning we
validate and test per each attack). We select optimal hyperparame-
ters6 (t, Ψ, contamination) from a search space using grid search
to obtain maximal macro F1 score on validation set. We plot the
distribution of test set samples (benign and malicious) as a function
of expected path lengths in Fig. 2 for 5 attacks. We clearly see a
significant overlap across benign and malicious samples for various
attacks. Therefore, we can conclude that expected path length is
not an adequate metric to differentiate between attack and normal
samples (conventional iForest models are inaccurate). We defer the
supplementary results for 10 other attacks to Fig. 7 in Appendix.
Key takeaway. Conventional iForest models lead to inaccurate
malicious traffic detection across various attacks.

3.2 iForest Design
We saw in §3.1 that conventional iForest models are inadequate
for malicious traffic detection tasks. This motivates us to propose a
novel design for iForest.

4Since the majority of traffic is benign traffic, whitelist rules help separate anomalies
(malicious traffic) from the regular traffic.
5The anomaly score of a sample 𝑥 in iForest is given by 𝑠𝑐𝑜𝑟𝑒 (𝑥 ) = 2

−E(ℎ (𝑥 ) )
𝑐 (𝑛) ,

whereE(ℎ (𝑥 ) ) is the expected path length traversed by 𝑥 over all iTrees and 𝑐 (𝑛)
is the normalization factor based on #samples in dataset, i.e. 𝑛.
6t denotes the number of iTrees, Ψ is sub-sample size, and contamintaion stands for
contamination ratio, meaning estimated fraction of malicious samples in validation
dataset (it also controls threshold 𝜏 ).

https://github.com/networked-systems-iith/iGuard
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Figure 2: Samples distribution for different expected path lengths in an iForest. We notice a significant overlap between malicious and benign samples for 5 attacks.
Other 10 attacks follow the same trend. Thus, iForest struggles to distinguish between malicious and benign samples.
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Figure 3: iForest design : (a) Autoencoder-guided iForest training (b) Knowledge distillation (c) Whitelist rules generation.

Our idea. Our key idea is to use a superior ensemble of trained
(on the same features as iForest) autoencoders to label each leaf
node of iForest by using expected reconstruction error of the samples
generated from that leaf node. This will help distinguish malicious
samples from benign ones that were initially not possible using
expected path lengths (the autoencoders can better identify subtle
differences in the feature values).
Challenge. When the vast majority of samples contained in a
leaf node are of the same class, the label from autoencoders can
rectify the inference result of iForest. However, when a leaf node
itself contains a similar number of benign and malicious samples,
using an ensemble of autoencoders to label that leaf node based on
expected reconstruction errors might not be adequate for accurate
malicious traffic detection.
Our approach. Our approach to tackle the above challenge is
to use trained autoencoders to guide iForest training such that the
samples generated at leaf nodes are heavily skewed towards samples

being either benign or malicious. Once iForest is trained this way, we
can then embed the expected reconstruction errors of the samples
generated at each leaf node to label that leaf node as 0 (benign) or 1
(malicious). We demonstrate our approach in detail in subsequent
subsections.

3.2.1 Autoencoder guided iForest training (Fig. 3a) We first train an
ensemble of 𝑟 autoencoders (independently) on a benign training
set consisting of 𝑚 features. Then for 𝑢𝑡ℎ autoencoder 𝐴𝐸𝑢 , the
reconstruction error 𝑅𝐸𝑢 (𝑥) for test sample 𝑥 is given by 𝑅𝐸𝑢 (𝑥) =√︃

1
𝑚

∑𝑚
𝑖=1 (𝐴𝐸𝑢 (𝑥)𝑖 − 𝑥𝑖 )2. The label assigned to sample 𝑥 by au-

toencoder 𝐴𝐸𝑢 is given by 𝑙𝑎𝑏𝑒𝑙𝑢 (𝑥) = 1{𝑅𝐸𝑢 (𝑥) > 𝑇𝑢 }, where 𝑇𝑢
is RMSE threshold of𝑢𝑡ℎ autoencoder𝐴𝐸𝑢 . For an ensemble of 𝑟 au-
toencoders,Autoencoders.predict(x) =1{∑𝑟

𝑢=1𝑤𝑢×𝑙𝑎𝑏𝑒𝑙𝑢 (𝑥) > 0.5},
where𝑤𝑢 ∈ [0, 1] is weight given to 𝐴𝐸𝑢 and

∑𝑤
𝑢=1𝑤𝑢 = 1.

iForest training. A conventional iForest is trained by ensembling
𝑡 iTrees, where each iTree is formed from Ψ randomly selected
sub-samples from the training set. At every node of iTree, a feature
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𝑞 ∈ 𝑄 is randomly selected from features set𝑄 , and a split point 𝑝 is
randomly selected lying between theminimum andmaximum value
of feature𝑞. The left and right subtrees are recursively created using
𝑞 < 𝑝 and 𝑞 ≥ 𝑝 until number of samples in a node |𝑋𝑛𝑜𝑑𝑒 | ≤ 1
or height of the tree ℎ ≥ ⌈𝑙𝑜𝑔2 (Ψ)⌉. We make two key changes to
this algorithm: node expansion i.e. how to expand an iTree recursively,
and when this algorithm needs to be stopped.
Node expansion criterion. At each node of an iTree, we have
associated feature ranges or feature boundaries. Also, we have
𝑋𝑛𝑜𝑑𝑒 samples associated with that node and |𝑋𝑛𝑜𝑑𝑒 | ≤ Ψ. We
additionally perform data augmentation to generate 𝑘 additional
points from that node (sampled from a distribution7 from fea-
tures range) as 𝑋𝑎𝑢𝑔 ∼ 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑟𝑎𝑛𝑔𝑒 , |𝑋𝑎𝑢𝑔 | = 𝑘 . Expanding an
iTree from a node into left and right subtrees depends on samples
𝑋𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑋𝑛𝑜𝑑𝑒 ∪ 𝑋𝑎𝑢𝑔 . Next, we use autoencoders to separate
out malicious samples from benign samples in 𝑋𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 as follows,

𝑋𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 = {∀𝑥 ∈ 𝑋𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 | 𝐴𝑢𝑡𝑜𝑒𝑛𝑐𝑜𝑑𝑒𝑟𝑠.𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝑥) = 1}
(1)

and 𝑋𝑏𝑒𝑛𝑖𝑔𝑛 = 𝑋𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 \ 𝑋𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 . Let 𝑝𝑟 =
|𝑋𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 |
|𝑋𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 | . Then

entropy at the node is given by,

𝐻 (𝑛𝑜𝑑𝑒) = −𝑝𝑟𝑙𝑜𝑔2 (𝑝𝑟 ) − (1 − 𝑝𝑟 )𝑙𝑜𝑔2 (1 − 𝑝𝑟 ) (2)

We then explore all possibilities of search space of (𝑞, 𝑝), where
𝑞 ∈ 𝑄 is a feature in features set 𝑄 , and 𝑝 is a possible value
for feature 𝑞 where iTree is split into left and right subtrees. If
we split an iTree at (𝑞, 𝑝), then 𝑋𝑙𝑒 𝑓 𝑡 = 𝑋𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 [𝑞 < 𝑝] and
𝑋𝑟𝑖𝑔ℎ𝑡 = 𝑋𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 [𝑞 ≥ 𝑝]. Let𝑤𝑙𝑒 𝑓 𝑡 =

|𝑋𝑙𝑒 𝑓 𝑡 |
|𝑋𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 | . Then,

𝐻 (node.children) = 𝑤𝑙𝑒 𝑓 𝑡 ·𝐻 (node.left) + (1−𝑤𝑙𝑒 𝑓 𝑡 ) ·𝐻 (node.right)
(3)

where 𝐻 (𝑛𝑜𝑑𝑒.𝑙𝑒 𝑓 𝑡) and 𝐻 (𝑛𝑜𝑑𝑒.𝑟𝑖𝑔ℎ𝑡) are calculated using Eq(1)
and Eq(2), except in place of 𝑋𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 , 𝑋𝑙𝑒 𝑓 𝑡 and 𝑋𝑟𝑖𝑔ℎ𝑡 are used.
Finally, we split on feature 𝑞∗ at value 𝑝∗ based on,

(𝑞∗, 𝑝∗) = argmax
(𝑞,𝑝 )

𝐻 (𝑛𝑜𝑑𝑒) − 𝐻 (𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛) (4)

The Eq(4) is in line with the logic of splitting an iTree into left
and right subtrees recursively to obtain a maximal split between
malicious and benign samples at the leaf node. We recursively
repeat the same node expansion procedure on the left and right
child of the node by giving them 𝑋𝑛𝑜𝑑𝑒.𝑙𝑒 𝑓 𝑡 = 𝑋𝑛𝑜𝑑𝑒 [𝑞∗ < 𝑝∗]
and 𝑋𝑛𝑜𝑑𝑒.𝑟𝑖𝑔ℎ𝑡 = 𝑋𝑛𝑜𝑑𝑒 [𝑞∗ ≥ 𝑝∗] samples respectively. The node
expansion continues until any one of the stopping criteria at a node is
met (as discussed below).
Stopping criterion. The criteria to stop an iTree’s node expansion
is when either |𝑋𝑛𝑜𝑑𝑒 | ≤ 1, current height of iTree at that node
ℎ ≥ ⌈𝑙𝑜𝑔2 (Ψ)⌉, or

𝑚𝑖𝑛 ( |𝑋𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 |, |𝑋𝑏𝑒𝑛𝑖𝑔𝑛 | )
𝑚𝑎𝑥 ( |𝑋𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 |, |𝑋𝑏𝑒𝑛𝑖𝑔𝑛 | ) < 𝜏𝑠𝑝𝑙𝑖𝑡

8. The last
criterion denotes that the vast majority of samples at a node are
either malicious or benign, and 𝜏𝑠𝑝𝑙𝑖𝑡 is the sample split threshold.
Any node satisfying any one of the 3 stopping criteria becomes a
leaf node.
Key takeaway. An iTree is expanded recursively based on max-
imum information gain (entropy loss) until a maximum height is
7We found that sampling from a normal distribution with mean as average of feature
boundaries and standard deviation as quartile range of feature boundaries worked.
8We found that 𝜏𝑠𝑝𝑙𝑖𝑡 = 10−2 worked well for our evaluation.

reached or a vast majority of samples at a node are skewed towards
being malicious or benign (as per the prediction from a trained
ensemble of autoencoders).

3.2.2 Knowledge distillation (Fig. 3b) Once our iForest is trained,
we need to transfer knowledge of autoencoders into the leaves of
iForest. This is done as follows. We traverse a sample 𝑥 ∈ 𝑋𝑡𝑟𝑎𝑖𝑛

on each of the 𝑡 iTrees and reach 𝑡 respective leaf nodes. This way,
we map 𝑥 to a leaf in every iTree. We repeat for all 𝑥 ∈ 𝑋𝑡𝑟𝑎𝑖𝑛 . Let
the samples mapped to the leaf node be 𝑋𝑙𝑒𝑎𝑓 ⊆ 𝑋𝑡𝑟𝑎𝑖𝑛 . For every
leaf, we also add 𝑘 additional data points sampled from an arbitrary
distribution𝑋𝑎𝑢𝑔 ∼ 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑟𝑎𝑛𝑔𝑒 (𝑙𝑒𝑎𝑓 ) and update for each leaf
𝑋𝑙𝑒𝑎𝑓 ← 𝑋𝑙𝑒𝑎𝑓 ∪ 𝑋𝑎𝑢𝑔 . Now, we embed expected reconstruction
errors into each leaf and transform them into a label. The expected
reconstruction error for each leaf node is given by,

𝑅𝐸𝑙𝑒𝑎𝑓 𝑢
=

1
|𝑋𝑙𝑒𝑎𝑓 |

∑︁
𝑥∈𝑋𝑙𝑒𝑎𝑓

𝑅𝐸𝑢 (𝑥) (5)

The expected reconstruction error is then transformed into a label
for every leaf node as follows,

𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑎𝑓 = 1
{ 𝑟∑︁
𝑢=1

𝑤𝑢 × 1{𝑅𝐸𝑙𝑒𝑎𝑓 𝑢 > 𝑇𝑢 } > 0.5
}

(6)

iForest inference. Given a test sample 𝑥𝑡𝑒𝑠𝑡 , we traverse each
of the 𝑡 iTrees and end up at 𝑡 leaves (one in each iTree). We then
retrieve labels from each leaf node and take the majority vote over
all the 𝑡 iTrees. That is, 𝑙𝑎𝑏𝑒𝑙 (𝑥𝑡𝑒𝑠𝑡 ) = majority_vote(labelleaf from
𝑡 leaves).
Time complexity overhead. In our design, the primary time
complexity overhead stems from the autoencoder-guided iForest
training step. This step contributes to the worst-case time com-
plexity for training iGuard’s model, which is more aligned with a
random forest approach rather than a standard iForest. The added
complexity arises from maximizing information gain by identifying
the optimal feature split.

3.2.3 Whitelist rules generation We show the whitelist rules gener-
ation from the trained iForest design of iGuard in Fig. 3c. As shown,
iForest hypercubes are formed from labeled iForest by considering
all combinations of feature ranges (obtained from all root-to-leaf
paths of iTrees), i.e., a cartesian product of all feature boundaries
at leaf nodes. Next, we randomly select a sample inside an iForest
hypercube and infer its class using our labeled iForest. We repeat
the process for all hypercubes. Further, we can merge adjacent
hypercubes sharing the same label (as shown by purple boxes in
Fig. 3c). Finally, hypercubes with 𝑙𝑎𝑏𝑒𝑙 = 0 are transformed into
whitelist rules which can be easily installed on the target switch
data plane. It is worth noting that each sample lying inside an iForest
hypercube will share the same label.
Results. To check the fidelity of the whitelist rules generated, we
use consistency 𝐶 given by, 𝐶 = 1

𝑁

∑𝑁
𝑖=1 1{𝑖𝐹𝑜𝑟𝑒𝑠𝑡𝑑𝑖𝑠𝑡𝑖𝑙𝑙𝑒𝑑 (𝑥𝑖 ) =

𝑅(𝑥𝑖 )}, where 𝑅 is the set of whitelist rules. We obtain the consis-
tency on distilled iForest design based on optimal hyperparameter
configuration (see §3.1) and average across all 15 attacks. We get
𝐶 = 0.992 to 0.996, which demonstrates that our whitelist rules
generation retains the original performance of distilled iForest.
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3.3 Switch-tailored Implementation
To implement iGuard on a programmable switch, we must tailor
our model as per the switch requirements and constraints.

3.3.1 Switch-tailored model design We encounter the following
key challenges while deploying our iForest model on programmable
switch data planes.
Limited stateful memory. Due to limited stateful memory and
high traffic volume, it is not feasible to maintain stateful flow-level
(FL) features persistently as they can be untimely overwritten due
to storage hash collisions [2, 44] (it is also not practical for Tbps
switches). Therefore, to reduce long-term resource consumption
of switches by keep-alive traffic and handle hash collisions, we set
per-flow packet count threshold 𝑛 (FL features are maintained until
PktCount ≥ 𝑛) based on pdf of per-flow packet counts [2, 3, 15].
We also set a timeout, meaning a flow’s stateful storage should be
released when the flow is idle for a duration more than 𝛿 [3, 15, 44].
To further mitigate hash collisions and enable bi-directional flow
indexing, we use the bi-hash algorithm and double hash tables [15].
In summary, we tailor our iForest model to be trained on FL features
truncated at packet count threshold 𝑛9 and timeout 𝛿 .
Early packets are ignored. Extracting FL features in the switch
can cause delay, and therefore early malicious packets (that remain
ignored) of a flowmay flood into the network and harm it [2]. To avoid
this, we train a conventional iForest only on the packet-level (PL)
features of the early packets of flows, generate whitelist rules, and
merge these rules with the whitelist rules of our labeled iForest. This
way, the final set of whitelist rules may be able to distinguish early
packets as malicious/benign before the packet count or timeout
threshold of a flow is reached.

3.3.2 Data plane implementation We show the data plane imple-
mentation of iGuard in Fig. 4 through 6 possible packet execution
paths (represented in different colors).
Red path. If the incoming packet’s 5-tuple matches with the
blacklist rules table (initially empty and updated by the control
plane), then we can block the deemed malicious packet early.
Brown path. If the incoming packet does not match the blacklist
rules table, is not under collision, and is 1 to 𝑛 − 1𝑡ℎ packet of a
flow and there is no timeout, then we update the stateful storage
but match only the packet’s PL features with whitelist rules (FL
features not yet reliable). Based on the outcome, we can decide
whether to forward or drop it.
Blue path. If the incoming packet does not match the blacklist
rules table, is not under collision, and the packet is either 𝑛𝑡ℎ packet
of a flow or there is a timeout, then we update the stateful storage
and match PL+FL features with the whitelist rules. A digest is sent
to the controller to install the blacklist rule (if no match), clear the
storage, and the packet is mirrored to the loopback port to update
the class (0 or 1). Moreover, in egress, the packet is also mirrored

9Some malicious flow samples may manifest after the packet count threshold 𝑛, poten-
tially causing misclassification. Attackers could also exploit this delayed manifestation.
While 𝑛 is a tunable hyperparameter optimized via grid search for maximum F1 score,
one solution could be using 2-3 threshold points instead of a single value. We would
prefer to block the flow as malicious if it is judged malicious on at least any one of the
points. This analysis could be explored as a part of future work.

TCAM SRAM sALUs VLIWs Stages
iForest [15] 16.47% 11.55% 19.59% 7.75% 12
iGuard 13.34% 11.51% 19.62% 7.79% 12

Table 1: Average resource consumptions in a switch across all 15 attacks. The
comparison of iGuard is made to previous iForest implementations [15].

to the CPU to update whitelist rules using FL features of benign
traffic.
Orange path. If the packet’s 5-tuple does not match with blacklist
rules and there is a collision, flow label storage is checked. If it is
either 0 or 1 (residing flow is classified), then we clear and initial-
ize the stateful storage with the incoming packet’s header values,
match PL features with whitelist rules, and mirror the packet to the
loopback port (to initialize flow ID). Otherwise, if flow label storage
is -1 (residing flow not yet classified), then we match the packet’s
PL features to whitelist rules and take an appropriate decision.
Purple path. If the packet’s 5-tuple does not match with blacklist
rules, there is no collision, and flow label storage is either 0 or 1,
then we can take the decision early, whether to forward this packet
or drop it.
Green path. If the packet is a mirrored packet on the loopback
port, then we take the decision based on its metadata value. If there
was a timeout, then we update the flow label storage and match
PL features with whitelist rules (because that latest packet was
unaccounted for). If it was 𝑛𝑡ℎ packet, we simply modify the flow
label storage. If there was a collision, we modify the flow ID storage.
Controller. Once the controller receives the digest (when the flow
class is determined in the data plane), it clears the stateful storage
based on the flow indexed by the 5-tuple it received. Moreover, if the
flow classified was malicious, the controller installs an appropriate
rule in the blacklist rules table. The controller can also delete old
rules from the blacklist table based on FIFO or LRU [44].

4 Evaluation
We use attack datasets [8, 14, 15, 23, 26] and normal datasets [15,
30]. The division of normal/benign datasets into training and test
datasets is entailed in HorusEye [15]. The normal training set is
further divided into training and validation in a 4 : 1 ratio. In both
validation and test set, 20% attack traffic is added (one attack at a
time). Best configuration is obtained using validation set while final
results (§4.1, §4.2) are obtained using the test set.

To select the best candidate for guiding iForest and knowledge
distillation, see Appendix §A.

4.1 CPU Experiments
We implement iGuard and conventional iForest models in python3
on 40-core, 2 x Intel(R) Xeon(R) Silver 4316 CPU @ 2.30GHz, and
256GB DDR4 memory. We use state-of-the-art autoencoder Magni-
fier [15] to train and perform knowledge distillation in iGuard.

We compare macro F1 score, PRAUC and ROCAUC (area under
PR and ROC curve) of iGuard with iForest on 5 different attacks as
shown in Fig. 5. FL features used in both are similar to those of the
autoencoder Magnifier. Both iGuard and iForest’s best versions10
are implemented. iGuard yields higher macro F1 score, PRAUC and
10For iGuard the best version is selected based on grid search on (t, Ψ, 𝑘, 𝑇 ) for
maximum value of average of macro F1 score, PRAUC and ROCAUC . 𝑘 is the number
of data points augmented from the nodes during training and knowledge distillation,
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Figure 5: Detection performance comparison of iGuard with iForest and Mag-
nifier [15] on CPU.
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Figure 6: Detection performance comparison of iGuard with iForest on Tofino
switch testbed.

ROCAUC (but similar toMagnifier) compared to iForest by 1.8-62.9%,
5.7-72.2% and 1.8-62.8% respectively. This is because as shown in
§3.1, iForest struggles to distinguish malicious samples from benign
based on expected path lengths. This is rectified byMagnifier which
is used to train iGuard . We defer the results for 10 other attacks
to Fig. 8 in the Appendix.
4.2 Testbed Experiments
We implement iGuard and iForest in P416 language and deploy
them on Edgecore 32X Tofino 1 switch with a forwarding rate of
6.4 Tbps. We use tcpreplay to generate traffic from PCAP traces
at 40 Gbps on a 40 Gbps link. Since all the features used by Mag-
nifier cannot be extracted in the data planes, we only consider 13
FL features such as per-flow packet count, total/average/standard
deviation/variance/min/max of packet size, average/minimum/vari-
ance/standard deviation/max of inter-packet delay, and flow dura-
tion (as in [44]). For PL features (to detect early malicious packets),
we consider destination port, protocol, packet’s length and TTL.
We use our custom (asymmetric) autoencoder11 for training and
knowledge distillation. Additional experiments in Appendix §B.

4.2.1 Detection performance. We use per-packet metrics [2] to
compare best versions12 of iGuard and iForest under the given
switchmemory budget. In otherwords, best version is based onmax-
imizing reward given by 𝛼

3 (𝐹1+𝑃𝑅𝐴𝑈𝐶 +𝑅𝑂𝐶𝐴𝑈𝐶 ) + (1−𝛼) (1−𝜌)

and𝑇 is RMSE threshold of autoencoders. For iForest, grid search is performed on (t,
Ψ, contamination).
11Data planes are unable to extract 2𝐷 statistics used by Magnifier.
12By performing grid search on packet count and timeout thresholds (n, 𝛿) besides
hyperparameters already mentioned in §4.1.

where 𝜌 is a measure of memory footprint of the system, expressed
as a fraction of the total available resources in the target switch.
We put 𝛼 = 0.5 to balance out the two factors in our experiments.

The comparison trend (shown in Fig. 6) shows that iGuard on
Tofino testbed improves macro F1 score by 5-48%, ROCAUC by
2-55.7% and PRAUC by 26-70% compared to previous hardware
implementations of iForest [15]. The reasoning is the same as given
in §4.1. Performance of iGuard on the testbed is generally lower
than on the CPU because only a few FL features can be extracted
on the switch data plane due to limited memory and per-packet
operations. Supplementary experiments deferred to Fig. 9 (more
attacks), and Table 2 and Table 3 (adversarial attacks) in Appendix.

4.2.2 Switch memory overheads. Resource consumption on the
switch for iGuard is similar or lower (lower TCAM) compared to
previous iForest implementations (Table 1) because of an additional
stopping criterion (which is to stop the iTree growth if samples
at that node are skewed towards malicious or benign). This fur-
ther restricts the number of whitelist rules and reduces TCAM
consumption in particular.
5 Related Work
We divide the works that perform malicious traffic detection using
unsupervised ML methods into two categories.
Control plane based. Works such as [11, 19, 26, 33, 38] cannot
scale to multi-Tbps because they perform attack detection (using
autoencoders) in the control plane. In contrast, iGuard is imple-
mented in data planes and thus can scale to Tbps. Although [16]
uses enhanced iForest by combining X-means algorithm for anom-
aly detection, it does not leverage data planes.
Programmable switch based. Only works that leverage pro-
grammable switches for anomaly detection using unsupervised
ML models are [4, 15]. Peregrine [4] extracts FL features in the
data plane but uses KitNet [26] in the control plane for anomaly
detection. On the contrary, HorusEye [15] deploys an unsupervised
iForest model in the switch data plane but it takes the support of
the autoencoder in the control plane for more accurate anomaly de-
tection. iGuard follows a different approach of offloading the entire
detection in data planes by coming up with a novel and efficient
iForest design.
6 Conclusion and Future work
We proposed iGuard , an efficient iForest design to detect malicious
traffic at line speed in data planes. iGuard leverages powerful au-
toencoders to rectify the attack detection of conventional iForests.
We saw that iGuard is implemented in data planes as whitelist rules
and can improve the accuracy of previous switch-based iForest im-
plementations up to 48.3%. For future work, see App. §C.
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Figure 7: Samples distribution for different expected path lengths in an iForest. We notice a significant overlap between malicious and benign samples for 10

attacks. Thus, iForest struggles to distinguish between malicious and benign samples.
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Figure 8: Detection performance of iGuard compared to iForest and Magnifier for 10 attacks on CPU. iGuard yields similar metrics compared to Magnifier but
compared to iForest it improves macro F1 score by 1.8-62.9%, PRAUC by 5.7-72.2% and ROCAUC by 1.8-62.8% respectively
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Figure 9: Detection performance of iGuard compared to iForest for 10 attacks on Tofino switch testbed. Improvement of macro F1 score by 5-48.3%, PRAUC by
26-70% and ROCAUC by 2-55.7% respectively.
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Low rate (UDPDDoS 1/100) Low rate (TCPDDoS 1/100) Poison (Mirai 2%) Poison (Mirai 10%)
iForest [15] 43.43%/44.42%/14.92% 57.43%/57.5%/23.8% 28.52%/29.56%/14.78% 15.55%/18.56%/6.24%
iGuard 65.92%/66.67%/59.01% 88.84%/89.12%/70.93% 65.75%/61.56%/30.54% 65.21%/61.5%/30.06%

Table 2: Detection performance of iGuard (in terms of macro F1/ROCAUC/PRAUC) compared to iForest for black-box low rate and poison adversarial attacks [15].
There is an improvement up to 22% - 57%.

Evasion (UDPDDoS 1:2) Evasion (TCPDDoS 1:2) Evasion (UDPDDoS 1:4) Evasion (TCPDDoS 1:4)
iForest [15] 33.33%/34.45%/20.51% 38.83%/39.68%/20% 40.52%/41.11%/28.87% 42.26%/42.62%/19.2%
iGuard 72.23%/78.85%/70.51% 100%/100%/100% 72.12%/77.55%/68.82% 87.23%/81.43%/68.39%

Table 3: Detection performance of iGuard (in terms of macro F1/ROCAUC/PRAUC) compared to iForest for black-box adversarial evasion attacks [15]. There is an
improvement up to 30% - 80%.
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Figure 10: We compare macro F1 score on the test set among best versions (fine-tuned on the validation set) of k-NN, PCA, iForest, X-means, Variational Autoencoder,
and Magnifier for 15 different attacks. We used the features similar to that of Magnifier. The architecture of VAE was similar to Magnifier, except for the use of
asymmetricity and dilated convolutions [15]. We notice that Magnifier outperforms all other models and therefore is chosen as a candidate to guide iForest to be
deployed on switch data planes.
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A Candidates for iGuard
Candidates for guiding iForest and knowledge distillation.
We compare the macro F1 score among the following unsupervised
ML models: iForest, PCA, k-Nearest neighbors (kNN), variational
autoencoders (VAEs) and Magnifier (asymmetric autoencoders). We
find out the best performers to be VAEs and Magnifier, out of which
Magnifier surpassed VAE in all but one of 15 attacks. Therefore, we
choose Magnifier as the final candidate for performing experiments
using iGuard. See Fig. 10.

B Supplementary Experiments
B.1 Throughput and latency
On a 40 Gbps link, iGuard yields a packet processing throughput
(averaged across all 15 attacks) of 39.6 Gbps. This is an improvement
of 66.47% over HorusEye [15] as HorusEye makes use of a control
plane for anomaly detection. We observe that the average per-
packet latency of iGuard across 15 attacks is 532.8ns.

B.2 Control plane overhead
Whenever a flow class (benign/malicious) is determined by iGuard
in the data plane, a digest is sent to the control plane carrying flow
ID in the form of 5-tuple (13B) and a flow label (1-bit). Assuming the
existence of 50k digests during a window of 30 seconds, iGuard rate
of control plane overhead is 21 KBps. In contrast, recent works [4,
15] that use programmable switch-based unsupervised MLmethods
need an extra ∼ 52B per digest as FL features to perform detection
in the control plane, an overhead of 110 KBps, which is 5.2x more
than iGuard. Therefore, the control plane interactions are managed
efficiently.

C Future Work
As a part of future work, we will add our new iForest design as a
module in scikit-learn [28].Wewill also try to improve the detection
performance of iGuard in data planes. Lastly, we will try to reduce
the time complexity overhead to train iGuard.
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