
A Case For Cross-Domain
Observability to Debug

Performance Issues in Microservices
Ranjitha K, Praveen Tammana, Pravein Govindan Kannan, Priyanka Naik

web

mobile

API

Service A

Service B

Service DService C

mongoDB

mySQL

DB

Presentation Layer

Service Layer

Persistence Layer

Monolithic Architecture Microservices Architecture
2

Cloud Deployments - Microservices

Cloud Deployments – SLA Violations!

web

mobile

API

Service A

Service B

Service DService C

mongoDB

mySQL

Kubernetes

container
container

container

Pod

container
container

container

Pod

Node1

container
container

container

Pod

Node N

Data centre network

IPIP IPIP

bridge

4

Network Connectivity in Microservices

Kubernetes

Container
Network
Interface
(CNI)

Performance Issues

• Sporadic increase in latencies
• 36% of performance anomalies are Transient [Bufscope, NSDI ‘22]
• Reasons could be :
• On any of the nodes involved :

• NAT, load-balancer, sender, receiver, etc.
• IPTables configuration
• CPU scheduling
• NIC Queueing

• Network links
• Congestion
• Microbursts
• Link Failures
• Packet corruption

Facebook Microbursts [IMC’17]
https://github.blog/2019-11-21-debugging-network-stalls-on-kubernetes/
https://blog.cloudflare.com/the-story-of-one-latency-spike/

https://github.blog/2019-11-21-debugging-network-stalls-on-kubernetes/
https://blog.cloudflare.com/the-story-of-one-latency-spike/

Need for end-to-end observability

6

Cluster nodes across server
racks

Data center network Network Observability

End host Observability

Network
operator

Limitations
• Disaggregated

• Network-level abstraction
• Service Mesh, Proxies

• Flow IDs does not match
• VXLANs, NAT

• Lack end-to-end visibility

Aggregating information and performing root cause analysis can be slow, inaccurate and misleading.

NetFlow
Per-Packet Postcards (NetSight)
In-band Network Telemetry (INT)

Pmacct
PingMesh [SIGCOMM ‘15]
Dapper [SOSR ‘17]

7

Is it possible to design and
efficient performance

monitoring framework that
can achieve
end-to-end

(cross-domain)
Observability?Cluster nodes across server

racks

Data center network Network Observability

End host Observability

Design
Enhance Host-observability:
• Monitoring Primitive

• RTT increase
• Packet Drops

• Tracer
• Collect Host-metrics (TPs, Socket, TC,

etc)
• Maintain recent history

• Mapping Primitive
• Container flow-IDs to Node flow-IDs

Prototype Implementation

• Monitoring Primitive [eBPF1-based]
• RTT monitoring for TCP Flows
• Stateful monitoring of Seq/ack-seq
• Per-CPU LRU Hash to maintain

<Seq, timestamp>
• Per-flow Moving average of RTT
• Trigger:

• Upon Increase of avg RTT by x%
• Threshold

1 ebpf.io

ebpf.io

Evaluation

40G link

server 1 server 2

Higher the better !

Lower the better !

Ongoing Work

• Tracer :
• Maintains continuous list of events (syscalls, timestamps)
• Ringbuffer-based recent history
• eBPF/Intel-PT

• Mapping Primitive
• eBPF-based flow mapping
• Monitor vETHs and outgoing interfaces

• Evaluate on a larger setup

Conclusion

• We present a case to build cross-domain observability framework to
debug performance issues.

• Feasibility of the system by implementing monitoring primitive.

• eBPF-based RTT monitoring with low overhead.

Thank You !
Contact : Pravein.Govindan.Kannan@ibm.com

