A Case For Cross-Domain
Observability to Debug
Performance Issues in Microservices

Ranjitha K, Praveen Tammana, Pravein Govindan Kannan, Priyanka Naik

ﬂﬂ?ﬂumaﬁﬁzﬁrwq%w
Hyderabad

SM Research

Cloud Deployments - Microservices

Presentation Layer

Service Layer

Persistence Layer

web

‘ Service A

y

API

<« | Service B

mobile)/

S

Service C |,

e

N

*| Service D

Monolithic Architecture

Microservices Architecture

Cloud Deployments — SLA Violations!

Service A monaoDB
web)\ /

APl .| Service B |«— mySQL

Service C |,

—*1 Service D

O O O

Kubernetes OPENSHIFT openstack.

Network Connectivity in Microservices

> Data centre network AE—
Nodel PP Container Node N IPIP
»| bridge |« Network
| Interface Pod

Pod pod (CNI) _L | |
_L | | L ' | container

container container

O O O

Kubernetes OPENSHIFT openstack.

Performance Issues

e Sporadic increase in latencies

* 36% of performance anomalies are Transient [Bufscope, NSDI ‘22]
e Reasons could be :

* On any of the nodes involved :

* NAT, load-balancer, sender, receiver, etc. | |
* |PTables configuration | \ | \
+ CPU scheduling 1 | | |
* NIC Queueing | |

e Network links \ | l \ \ A

* Congestion
* Microbursts
* Link Failures
* Packet corruption
Facebook Microbursts [IMC’17]
https://github.blog/2019-11-21-debugging-network-stalls-on-kubernetes/
httos://blog.cloudflare.com/the-storv-of-one-latencv-spike/

https://github.blog/2019-11-21-debugging-network-stalls-on-kubernetes/
https://blog.cloudflare.com/the-story-of-one-latency-spike/

Need for end-to-end observability
4)

Data center network Network Observability
NetFlow
Per-Packet Postcards (NetSight)
¢ In-band Network Telemetry (INT)

Limitations

« Disaggregated

\ / Ck?/\\ Network-level abstraction
e Service Mesh, Proxies

Network
operator Flow IDs does not match
- VXLANSs, NAT

« Lack end-to-end visibility
Cluster nodes across server End host Observability
racks

Pmacct
PingMesh [SIGCOMM ‘15]
Dapper [SOSR 17]

Aggregating information and performing root cause analysis can be slow, inaccurate and misleading.

-

Data center network

~

Cluster nodes across server
racks

Network Observability

End host Observability

Is it possible to design and
efficient performance
monitoring framework that
can achieve
end-to-end
(cross-domain)
Observability?

Design
Performance Debugging

Install Triggers Applications

Enhance Host-observability: *hook point
. . e _ene * monitoring primitive ‘ SQL-like Queries
* Monitoring Primitive
e RTT increase Data Center Network
* Packet Drops Network traces
e Tracer — (e.g., NetFlow, INT)
* Collect Host-metrics (TPs, Socket, TC, Per-node traces
etc) - =N * hook point
* Maintain recent history = I:I =l I5] . timestamp
* Mapping Primitive : 2 IZ) - process/thread name

* Cpucore

* pod name

* namespace

* mapping primitive data

e Container flow-IDs to Node flow-IDs

Prototype Implementation

* Monitoring Primitive [eBPF*-based]
* RTT monitoring for TCP Flows
Stateful monitoring of Seq/ack-seq
Per-CPU LRU Hash to maintain
<Seq, timestamp>
Per-flow Moving average of RTT
Trigger:

* Upon Increase of avg RTT by x%

* Threshold [e,
write() read() sendmsg() | Trecvms a()
Syscall Syscall
F
e iptor

HesP! HeBPF

v v
x Sockets _ geapr
o N
c = VFS epr TCP/IP_ chempr
=

aLBtF HeBPF

1 ebpf.io

* hook point
* monitoring primitiye

erformance Debugging
Applications

‘ SQL-like Queries

Install Triggers

o
W eBPF

Data Center Network

4 Network traces
—_ (e.g., NetFlow, INT)

Per-node traces

} =1 |° hook point
> -+ timestamp
i i process/thread name

cpu core
pod name

namespace

mapping primitive data

ebpf.io

Avg Throughput (Gbps)

40
35 -
30 -
25 -
20 -
15 -
10 -

Evaluation

ngher the better !

Native eBPF-rtt host-int* Tcptrace

60

50

40

30

20

Avg CPU Util(%)

10

Lower

2.69

|
53.15

the better !

eBPF-rtt host-int* Tcptrace

server 1

40G link

server 2

Ongoing Work

* Tracer :
* Maintains continuous list of events (syscalls, timestamps)
* Ringbuffer-based recent history
* eBPF/Intel-PT
* Mapping Primitive
* eBPF-based flow mapping
* Monitor vETHs and outgoing interfaces

* Evaluate on a larger setup

Conclusion

* We present a case to build cross-domain observability framework to
debug performance issues.

* Feasibility of the system by implementing monitoring primitive.

* eBPF-based RTT monitoring with low overhead.

Thank You !
Contact : Pravein.Govindan.Kannan@ibm.com

