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Abstract—Many UAV technology use cases (e.g., traffic man-
agement) has ultra-low latency and strong security requirements.
But achieving both simultaneously is challenging. In this work,
we consider UAV device authentication as a use case and develop
a fast and secure UAV device authentication system. Our key
idea is to leverage highly secure Physically Unclonable Func-
tions (PUFs) and high-speed programmable packet-processing
data planes, and develop a practically deployable PUF-based
authentication protocol for UAVs that is (a) robust to various
security attacks, and (b) enables UAV authentication at network
speed. In this work, we demonstrate the feasibility of our idea
by offloading the authentication protocol to a Tofino-based high-
speed programmable switch. Our preliminary experiments show
that protocol offloading would reduce authentication latency
significantly (approx. 100%).

I. INTRODUCTION

Unmanned Aerial Vehicle (UAV) technology is being de-
ployed around the world at a rapid pace with use cases
such as delivery services, flying base stations, remote sens-
ing, surveillance, and smart city applications. Many of these
services require ultra-low latency and secure communication.
A category of UAV devices (e.g., small aerial drones) are
lightweight, unmanned, and deployed in the open air, therefore
(1) they are vulnerable to various attacks [1] that aim to steal
sensitive data, such as tampering, spoofing, man-in-the-middle,
cloning, etc; and (2) they have constraints on compute and
energy resources.

To prevent such attacks, device authentication plays a key
role in avoiding unauthorized devices being part of the net-
work. Existing crypto-based authentication techniques provide
necessary security, but they are proven to be inefficient in
terms of computing requirements and energy consumption.
These techniques are compute-intensive, thus require many
CPU cycles, and are energy inefficient [2]. Moreover, often-
times secret information (e.g., private keys) is stored in the
device on battery-backed storage. If an adversary gets access
to the device, the secret information would get exposed and
thus compromise the UAV network. With these limitations,
the key question that we like to investigate in this work is:
How to authenticate resource-constrained UAV devices using
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Fig. 1. PUF-based UAV Authentication Protocol

techniques that are computationally light-weight, fast, and
resistant to data tampering and spoofing attacks?

One potential approach is to leverage Physical Unclonable
Functions (PUFs) [3], [4] for device identification and au-
thentication purposes. PUFs are lightweight and unclonable,
and there have been many PUF-based authentication proto-
cols [5]–[11] that are robust to data tampering and spoofing
attacks. Fig. 1 summarizes the key idea behind these protocols.
Though the existing works mainly focus on the security anal-
ysis (e.g., security proofs) of proposed protocols, they do not
provide insights on other important performance parameters
such as latency and throughput.

More specifically, consider that the authentication function-
ality (or PUF verifier logic) is running on a general-purpose
CPU server at a ground control station. Before a UAV can
access resources (i.e., data, compute, network), (a) it sends
an authentication request to the control station, (b) then the
station issues a challenge to the UAV followed by a response
message from the UAV to the station. All these steps add
significant delays before the data at UAV is sent to the intended
destination. More specifically, the end-to-end authentication
request completion time can take up to milliseconds due to
(1) multiple RTTs, and (2) packet copies and I/O interrupts
at an edge server, especially while moving packets from the
network interface to the hypervisor layer to the application
layer to PUF verifier. To summarize, PUF-based authentication
introduces additional processing delay in addition to the exist-
ing propagation and transmission delay, making it challenging



to achieve ultra-low latency requirements (i.e., < 1000 micro
secs) of UAV applications.

In this work, we aim to take a step towards building a secure
and fast PUF-based device authentication system by leveraging
high-speed programmable data planes (e.g., smartNICs [12],
Intel Tofino switch [13]). Recent works [14], [15] show
performance benefits by offloading network functions from
CPUs to programmable data planes. Inspired by them, in
this work we propose to offload PUF-based authentication
protocol to a high-speed programmable switch. By doing so,
our approach significantly reduces the time to authenticate a
device, thereby satisfying ultra-low latency requirements of
various UAV application use cases.

To demonstrate the feasibility of our idea, we offloaded
the PUF verifier logic of an authentication protocol to
Wedge100BF Tofino programmable switch [13]. By doing
so, we observe close to 100% improvement in authentication
request processing time compared to the time taken by a PUF
verifier logic running on a general-purpose CPU server.

II. BACKGROUND

Physical Unclonable Functions (PUFs). PUFs operate on a
challenge-response mechanism, that is, given an input stimulus
called a challenge, it generates an output called response.
To generate a response for a given challenge, PUF hardware
relies on the inherent randomness involved in the manu-
facturing process of physical structure. Since the variation
in the physical structure cannot be replicated, two different
PUFs manufactured with the same circuit and fabrication
process would give different outputs for the same input, thus
unclonable. To summarize, similar to the device fingerprint,
PUFs can be used as a unique identifier and prevent the
adversary from spoofing legitimate devices. Such security
benefits and lightweight functioning make PUFs a promising
choice for device authentication. Other applications of PUFs
are cryptographic key generation [16] and construction of
leakage-resilient block ciphers [17].
PUF-based authentication protocol. Using PUFs, one can
develop an authentication protocol that runs between UAV and
ground control station (GS) where GS acts as a verifier. As
shown in Fig. 1, the protocol has two phases: the enrollment
phase and the authentication phase. Before enrolling a UAV,
challenge-response pairs (CRPs) are generated using PUF
hardware on the UAV and the generated CRPs are securely
stored in the verifier database. During the authentication phase,
the verifier issues a challenge (picked randomly from the
stored CRPs) to the UAV, followed by a response generated
by the UAV’s PUF. The authentication is successful only if
the UAV’s response matches with the response at the verifier.
Accelerate authentication using P4 and Programmable
switch. To keep up with high line rates (e.g., order of Tbps),
programmable switches (e.g., Intel Tofino switch [13]) support
only a few dozens of arithmetic and comparison operations.
Since the PUF verifier logic is simple, it is amenable to
implementation on a programmable switch. To do so, we
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can write programs using P4 [18], a domain-specific network
programming language, and specify which packet headers to
be recognized in the switch data plane and how the recog-
nized headers should be processed. In short, using P4 and
programmable switches, one can implement novel protocols
(e.g., PUF verifier logic) entirely in the switch data plane
and process authentication requests much faster than general-
purpose CPUs.
Programmable switch pipeline. Programmable switches
(e.g., Intel’s Tofino [13]) follow an abstract switch model [19]
called protocol-independent switch architecture (PISA). PISA
contains mainly four components: parser, match-action tables,
registers, and computation primitives. A parser is a finite state
machine using which a P4 programmer can declare which
packet headers to be recognized in the switch pipeline. The
pipeline also contains a chain of match-action tables where
each table can be programmed with a set of rules; each
rule matches on a header field and applies associated action
(e.g., rewrite header, drop). Registers can be programmed to
maintain state (e.g., counters) across packets and the state can
be read/written by packets at line rate. Finally, computation
primitives can be used to perform arithmetic and logical op-
erations (e.g., additions, bit-shifts, hashing) on packet header
fields and per-packet temporary buffer called metadata.

III. OFFLOADING PUF VERIFIER TO SWITCH

In this work, we propose to offload PUF verifier logic
from the CPU to a programmable switch. By doing so,
we can significantly reduce the time to authenticate a UAV
device (latency), subsequently improving the authenticate rate



msgType challenge 1 challenge 2 rndNumber
1 byte 4 bytes 4 bytes4 bytes

msgType Value
Request 0x00
Challenge 0x01
Response 0x02
Ack 0x03

Authentication challenge message format

Authentication response message format

msgType Response
1 byte

header auth_h
{

bit<8> msgType;
bit<32> challenge1;
bit<32> challenge2;
bit<32> rndNumber;

}

4 bytes

(a) Authentication protocol message formats

auth 
req?

idx 1 = rnd()%(N/2)
idx 2 = rnd()%(N/2)

auth 
resp?

Δ1 = Δ2

Ingress 
Parser

auth 
req/resp

MAT 1

MAT 2

(C1, R1)

(C2, R2)

RN = rnd();
Δ1  = Hash(R1,R2,RN)
RN’ = RN ^ (R1 | R2)
reg_idx = hash(srcMAC)
reg.write(reg_idx, Δ1 )
hdr.auth.msgType = 1
hdr.auth.challenge1=C1
hdr.auth.challenge2=C2
hdr.auth.rndNum = RN'

send
hdr.auth

reg_idx=hash(srcMAC)
Δ1 = reg.read(reg_idx)
Δ2 =  auth.hdr.response

Ingress
Deparser

hdr.auth.msgType = 3 send
hdr.auth

(srcMAC, idx1)

(srcMAC, idx2)

(b) Authentication request and response flow at the switch
Fig. 4. PUF verifier packet-processing in programmable switch pipeline
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(throughput). In the literature, there are many versions of
PUF-based authentication protocol to make the protocol robust
to security attacks. Since our focus is to understand the
benefits of offloading the PUF verifier, we choose one simple
protocol [7] and demonstrate its implementation feasibility
on the switch using P4 language. Fig. 2 shows the workflow
of authentication protocol that we offload to programmable
switch. [7] has more details on security proof of this protocol.

Enrollment Phase. Before deploying a UAV, Challenge-
Response Pairs (CRPs) are generated using UAV’s PUF hard-
ware. The CRPs of all UAVs managed by a ground control sta-
tion or an edge cloud is stored in a database. In our approach,
the CRPs in the database is programmed as match-action table
(MAT) entries, so that during the authentication phase they are
accessible in the switch pipeline. More specifically, suppose
there are n CRPs per UAV and a total of M UAVs. As shown
in Fig. 3, two MATs are programmed with entries such that
each entry matches on two header fields: UAV MAC address
(srcMAC) to uniquely identify a UAV and an index (idx)
range from 1 to N/2 (i.e., one table entry for each CRP).
We divide per-UAV CRPs (e.g., 1 to N for UAV X) equally
across multiple tables; the number of tables is the same as
the number of challenges to be sent to the UAV (more details
to follow). Note that one can add table entries using control
plane software like P4Runtime [20].

Authentication Phase. As shown in Fig. 4(a), we define a

protocol header (auth h) to support four types of protocol
messages: Request, Challenge, Response, and Acknowledge-
ment. An authentication message type is identified using
msgType field. On each packet arrival, the ingress parser
extracts the authentication header and then checks whether the
packet is a request message or a response message. Fig. 4(b)
shows the flow of these two messages in the switch pipeline.
Challenge by the switch. For each request message, the
switch identifies UAV’s CRPs using MAC address and sends
two randomly picked challenges to the UAV. To do so, we
generate two random numbers in the range of 0 to N/2 and
store them in idx1 and idx2, respectively. The UAV’s MAC
address and indexes are used as match fields in MATs and
copy associated CR pairs (i.e., (C1, R1) and (C2, R2)) to
packet metadata fields. Next, a hash value (△1) and a random
number (RN

′
) is computed from three fields: R1, R2, and a

random number (RN ). To remember that a challenge is issued
for a particular UAV, △1 is stored in a stateful register indexed
by a hash value (reg idx) obtained by hashing UAV’s MAC
address (we can also use 5-tuple packet header fields). After
that, a challenge packet is prepared with the randomly picked
challenges and sent to the UAV.
UAV response. Fig. 5 shows the packet flow for challenge and
acknowledgment messages. UAV reads challenges (C1, C2)
in the challenge message sent by the switch, and asks PUF
hardware to generate a response for each of these challenges.
From the responses (R1, R2) and RN

′
, a hash value (△2)

is generated and a response message with the computed hash
value is sent to the switch.
Validate response at the switch. Upon receiving the response,
the switch first retrieves the hash value (△1) stored previously
in the stateful register and compares △1 with the hash value
in the response packet (△2). If both are the same, then the
switch will send an acknowledgment message to the UAV to
indicate that the UAV is successfully authenticated.
Mapping verifier operations to P4 constructs. To sum-
marize, Fig. 6 shows the mapping of operations in PUF
verifier logic to P4 language constructs. Hash functions that
are part of the authentication are supported as externs in
P4. It is noteworthy that different P4 data planes support
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different hash functions offering varying levels of security. For
example, Intel’s Tofino switch does not support secure hash
functions like SHA, instead, it supports insecure CRC hash.
Whereas other programmable data planes such as Netronome
SmartNICs [12] and Nvidia BlueField [21] do support secure
hashing like SHA, but they are SoC-based NICs thus packet-
processing latency is higher than programmable switch. A
recent work implemented HMAC like secure hash function
called sipHash [22] on the Tofino switch. To offer strong
security guarantees, in our future work, we plan to integrate
PUF verifier with sipHash running on Tofino. To summarize,
depending on the underlying data plane used for implementa-
tion, our protocol use hash functions that are available on the
respective data plane.

IV. PRELIMINARY EVALUATION

Experimental setup. To demonstrate the feasibility of our
idea, we implement the PUF verifier logic on the Wedge100BF
Tofino switch and find the time taken to authenticate a UAV.
The testbed comprises one Wedge100BF Tofino switch and
one server. Tofino switch has 32 ports each with a maximum
speed of 100 Gbps and the server is equipped with 2 Intel Xeon
8-core 3.2 GHz CPU with a dual-port 100 Gbps Netronome
smartNICs. Two ports of the switch are connected to the two
ports of the server using a QSFP40Gb ethernet copper cable.
Switch verifier. We implement PUF verifier in P4 language
and compiled the P4 program using SDE 9.7.0. We deployed
the compiled P4 program along with 5 CRPs in the match-
action table. The setup is shown in Fig. 7. Next, we simulate
UAV requests by opening a UDP socket (written in C++)
on the server and send 100 authentication requests one after
another to the switch. To find the time taken to finish authen-
tication (includes request, challenge, response, and ack), we
collect packet traces and compute the time elapsed between
request and corresponding ack.
Server verifier. To understand the offload benefits in terms of
latency, we also run the PUF verifier written in C++ on the
server and compare the authentication latency with the switch
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Fig. 8. Server verifier setup
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implementation. For this, on the same server, we create two
network namespaces named UAV and verifier, and assigned
the namespaces to authentication request generator and CPU-
based verifier, respectively. As shown in Fig. 8, requests are
sent to the NIC port connected to the Tofino switch, and
the switch simply forwards the request to another port on
which the CPU verifier is listening for authentication requests.
Similar to the switch verifier experiment, we send 100 requests
and compute the time taken to finish authentication.
Results. Fig. 9 shows the cumulative distribution function
(CDF) of authentication latency of all requests for both imple-
mentations. We observe that the authentication latency of the
switch verifier is less than 214 microseconds for 99% of the
time whereas it is 432 microseconds in the server verifier case.
This indicates offloading the PUF verifier to switch pipeline
will improve authentication latency by 2 times which is close
to 100% improvement.

V. CONCLUSION AND FUTURE WORK

In this work, we implement a PUF-based authentication
protocol on programmable switch. Our preliminary evaluation
shows that by offloading the PUF verifier to switch, we can im-
prove authentication latency significantly, thus enables to meet
the ultra-low latency. In our future work, we plan to (1) address
challenges that arise while scaling our approach to tens of
thousands of UAVs, especially in terms of authentication rate,
the maximum number of concurrent requests, and resource
overhead; (2) explore secure hashing techniques that can run
on Tofino switch; (3) extend PUF-based authentication with
key exchange mechanism; (4) design a device-to-device PUF-
based authentication protocol where programmable switch acts
as a gateway; and (5) offload PUF verifier to other software
and hardware programmable data plane targets.
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