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Abstract—The recent advances in network management au-
tomation and Software-Defined Networking (SDN) facilitate net-
work policy management tasks. At the same time, these new
technologies create a new mode of failure in the management
cycle itself. Network policies are presented in an abstract model at
a centralized controller and deployed as low-level rules across net-
work devices. Thus, any software and hardware element in that
cycle can be a potential cause of underlying network problems. In
this paper, we present and solve a network policy fault localization
problem that arises in operating policy management frameworks
for a production network. We formulate our problem via risk
modeling and propose a greedy algorithm that quickly localizes
faulty policy objects in the network policy. We then design and
develop SCOUT—a fully-automated system that produces faulty
policy objects and further pinpoints physical-level failures which
made the objects faulty. Evaluation results using a real testbed
and extensive simulations demonstrate that SCOUT detects faulty
objects with small false positives and false negatives.

I. INTRODUCTION

Fast fault localization in the network is essential but be-
coming more challenging than ever. Modern networks are
increasingly complex. The network infrastructures support new
complex functions such as virtualization, multitenancy, perfor-
mance isolation, access control, and so forth. The instantiation
of these functions is governed by high-level network policies
that reflect on network-wide requirements. SDN! makes such
network management tasks easier with a global view on the
network state at a logically centralized SDN controller.

In a network, a vast amount of low-level configuration
instructions can be translated from a few high-level policies.
Errors that lurk during policy creation, translation or delivery,
may lead to the incorrect deployment of a large number of
low-level rules in network devices. A single error for a policy
can cause a serious damage such as outage to business-critical
services. Hence, the network policy management process of
SDN creates a new mode of failure.

A number of frameworks [1], [2], [3], [4], [5], [6], [7] aid
network policy management tasks through abstraction, policy
composition and deployment. However, these frameworks are
not immune to various faulty situations that can arise from
misconfiguration, software bugs, hardware failure, control
channel disruption, device memory overflow, etc. Many of
them incur a flow of instructions from a centralized controller,
to a software agent in a network device and finally to ternary
content addressable memory (TCAM) in that device. Thus,

'In this paper, SDN is used in a broader context, not just limited to the
OpenFlow protocol, to which all the discussions are still relevant.

any element in this data flow can be the root cause of policy
deployment failures.

When a network policy is not rendered in the network as
expected, network admins should first understand which part
of the policy has been affected. This is challenging because
the admins can end up examining tens of thousands of low-
level rules. In the existing policy management frameworks [1],
[3], low-level rules are built from dependencies among policy
objects (in short, objects) such as web tier, DB tier, bridge
domain, filter, and so on. Our study on a production cluster
reveals that even one object can be used to create TCAM
rules for over thousands of endpoints (§III-A and Figure 3).
This implies that a fault of that single object can lead to a
communication outage for those numerous endpoints, and the
admins observe too many failures. Examining all of the TCAM
rules associated with the endpoints would be tedious. Thus,
the admins require a fully-automated means that quickly nails
down to the part of the policy they should look into or further
diagnose to fix a large number of the observed failures.

Existing work on network verification (e.g., [8], [9], [10])
only consider correctness between the desired state (e.g., the
network policy) and the actual state (e.g., low-level TCAM
rules). In contrast, this work focuses on localization of the
faulty parts of the policy (i.e., desired state) and the root cause
diagnosis of faulty behaviors.

We call the problem of finding out the impaired parts of the
policy as a network policy fault localization problem, which
we tackle via risk modeling [11]. We propose risk models,
which are simple bipartite graphs that capture dependencies
between risks (i.e., objects) and nodes (e.g., endpoints or end
user applications) that can be affected by those risks. Upon the
detection of policy deployment failures (discussed in §III-C),
the risks and nodes associated with the observed failures are
annotated in the risk models. Using the annotated risk models,
we devise a greedy fault localization algorithm called SCoUT
that outputs a hypothesis—a minimum set of most-likely faulty
policy objects that explains most of the observed failures.

At first glance, solving this policy fault localization problem
looks straightforward as a similar problem has been studied
for IP networks [11]. However, as this paper tries to address
the problem in a new operating domain — SDN-enabled
data center and enterprise networks, there are two key chal-
lenges. First, it is difficult to represent risks in the network
policy as a single model. Solving many risk models can be
computationally expensive. In our modeling, we fortunately
require two risk models only: switch risk model and controller



risk model (§III-B). We make the two models based on our
observation that faults of policy objects occur at two broad
layers (controller and switch). If the controller malfunctions,
unsuccessful policy deployment can potentially affect all the
switches in the network (thus, controller risk model). In
contrast, a policy deployment failure can be limited to a switch
if that switch only becomes faulty (thus, switch risk model).
Our second challenge stems from the fact that the degree of
impact on endpoints caused by a faulty object varies substan-
tially. On the one hand, a subset of objects is responsible for all
of the impacted endpoints. On the other hand, the subset may
cause trouble to a small fraction of the whole endpoints that
rely on them. This variety makes accurate fault localization
difficult. An existing algorithm [11] tends to choose policy
objects in the former case while it treats objects in the latter
case as input noise. However, our problem does often present
the latter case. To handle both cases well, the SCOUT system
employs a 2-stage approach; it first picks objects only if all of
their dependent endpoints are impacted; next, for (typically a
small number of) objects left unexplained in the risk model,
it analyzes the change logs (maintained at a controller) and
selects the objects to which some actions are recently applied
(8IV). Despite its simplicity, this heuristic effectively localizes
faulty objects (§VI).
Overall, this paper makes the following main contributions.
1) We introduce and study a network policy fault local-
ization problem (§II) in the context of SDN. This is a
new problem that gained little attention but is of utmost
importance in operating a network policy management
framework safely.

2) We introduce two risk models (switch and controller risk
models) that precisely capture the characteristics of the
problem and help its formulation (§III).

3) We devise a network policy fault localization algorithm
that quickly narrows down a small number of suspicious
faulty objects (§IV). We then design and implement
ScouT (§V), a system that conducts an end-to-end au-
tomatic fault localization from failures on policy objects
to physical-level failures that made the objects faulty.

4) We evaluate SCOUT using a real production cluster and
extensive simulations (§VI). Our evaluations show that
ScouT achieves 20-50% higher accuracy than an existing
solution and is scalable. SCOUT runs a large-scale con-
troller risk model of a network with 500 leaf switches,
under 130 seconds in a commodity machine.

II. POLICY DEPLOYMENT BY EXAMPLE

In this section we first introduce network policy, its abstrac-
tion model, and its deployment. We then discuss network state
inconsistency caused by failures of elements involved in the
network policy management.

A. Network policy

In general network policies dictate the way traffic should
be treated in a network. In managing network policies, ten-

ant/admins should be able to express their intent on traffic
via a model and to enforce the policies at individual network
devices. To enable more flexible composition and management
of network policies, several frameworks [1], [3], [7] present
the network policies in an abstracted model (e.g., a graph) that
describes communication relationships among phyiscal/logical
entities such as servers, switches, middleboxes, VMs, etc.

Intent illustration. As an example, consider a canonical 3-
tier web service that consists of Web, App and DB servers
(or VMs) as shown in Figure 1(a). Here the tenant intent is to
allow communication on specific ports between the application
tiers, i.e., port 80 between Web and App, ports 80 and 700
between App and DB. A network policy framework transforms
intent of users (tenant, network admins, etc.) into an abstracted
policy as illustrated in Figure 1(b).

Network policy presentation. For driving our discussion,
we here apply a network policy abstraction model used
in Cisco’s application-centric policy infrastructure controller
(APIC) [3], which is quite similar to other models (e.g.,
GBP [7], PGA [1]); and our work for localizing faults in
network policy management is agnostic to policy abstraction
model itself. Figure 1(b) illustrates a network policy (as a
graph represented with policy objects) transformed from the
tenant intent shown in Figure 1(a). We discuss each of those
policy objects next.

An endpoint group (EPG) represents a set of endpoints
(EPs), e.g., servers, VMs, and middleboxes, that belong to the
same application tier. A filter governs access control between
EPGs. This policy entity takes a whitelisting apporach, which
by default blocks all traffic in the absence of mapping between
EPGs and filters.

The mapping between EPGs and filters are indirectly man-
aged by an object called contract, which serves as a glue
between EPGs and filters. A contract defines what filters need
to be applied to which EPGs. Thus, a contract enables easy
modification of filters. For example, in Figure 1(b), let us
assume EPG:App and EPG:DB no longer require communica-
tion between them on port 700. This only requires to remove
“Filter: port 700/allow” from the Contract:App-DB; no update
between EPGs and their contract is necessary.

Finally, the scope of all EPGs in a tenant policy is defined
using a layer-3 virtual private network, realized with a virtual
routing and forwarding (VRF) object. Note that in APIC, a
single VRF can be used by multiple tenants; similarly a tenant
can have multiple VRFs.

Network policy deployment. A network policy should be
realized through deployment. A centralized controller main-
tains the network policy and makes changes on it. When
updates (add/delete/modify) on a network policy are made, the
controller compiles the new policy, produces instructions that
consist of policy objects and the update operations associated
with the objects. The controller then distributes the instructions
to those switches that end-points in EPGs are connected
to. The switch agents also locally maintain a partial logical



Fig. 1.

No. Rule Action
1 VRF:101,Web,App,Port80  Allow
2 VRF:101,App,Web,Port80  Allow
3 VRF:101,App,DB,Port80  Allow
4 VRF:101,DB,App,Port80  Allow
5 VRF:101,App,DB,Port700  Allow
6 VRF:101,DB,App,Port700  Allow
7 o  k Deny

Fig. 2. TCAM rules in switch S,. Note that here a rule is annotated with
object types in it for ease of exposition.

view of the network policy, and apply instructions from the
controller on the logical view. The switch agents transform
any changes on the logical view into low-level TCAM rules.
Note that there are multiple technologies to link controller and
switch agents like OpenFlow, OpFlex [12], etc. Also, TCAM
could have matching rules based on either typical IP packet
header fields or custom proprietary header fields. Our work on
fault localization is agnostic to both linking technologies and
the format of TCAM rules.

Consider a network topology (Figure 1) where EP; is at-
tached to switch S, EP> to S> and EP; to S3. Let us assume
that EP; € EPG:Web, EP, € EPG:App and EP; € EPG:DB.
Putting it altogether, the controller sends out the instructions
about EPG:Web to switch S; (as EP; is connected to Sp),
those about EPG:App to switch S>, and so forth. As the three
switches receive the instructions on those EPGs for the first
time, they build a logical view from scratch (see Figure 1(c)
for example). Hence, a series of add operations invoke TCAM
rule installations in each switch. Figure 2 shows access control
list (ACL) rules rendered in TCAM of ;.

B. Network state inconsistency

Network policy enforcement is by nature a distributed
process and involves the management of three key elements:
(1) a global network policy at controller, (ii) a local network
policy at switch agent, and (iii) TCAM rules generated from
the local policy. Ideally, the states among these three elements
should be equivalent in order for the network to function as
intended by admins.

In reality, these elements may not be in an equivalent state
due to a number of reasons. A switch agent may crash in
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An example of network policy management framework. EP stands for endpoint, and EPG denotes endpoint group.

the middle of TCAM rule updates. A temporal disconnection
between the controller and switch agent during the instruction
push. TCAM has insufficient space to add new ACL rules,
which renders the rule installation incomplete. The agent may
run a local rule eviction mechanism, which even worsens
the situation because the controller may be unaware of the
rules deleted from TCAM. Even TCAM is simply corrupted
due to hardware failure. All of these cases can create a state
mismatch among controller, switch agent and TCAM level,
which compromises the integrity of the network.

One approach to this issue is to make network policy man-
agement frameworks more resilient against failures. However,
failures are inevitable, so is the network state inconsistency.

ITII. SHARED RISKS IN NETWORK POLICY

We exploit shared risk models for our network policy fault
localization problem. The shared risk model has been well
studied in IP networks [11]. For instance, when a fiber optic
cable carries multiple logical IP links, the cable is recognized
as a shared risk for those IP links because the optical cable
failure would make the IP links fail or perform poorly.

Deploying a network policy also presents shared risks. A
network policy comprises policy objects (such as VRF, EPGs,
contract, filter, etc). The relationship among those objects
dictates how a network policy must be realized. If an object
is absent or ill-represented in any of controller, switch agent
and TCAM layers, all of EPG pairs that rely on that object
would be negatively impacted. Thus, these policy objects on
which a set of EPG pairs rely are shared risks in the network
policy deployment.

Figure 2 depicts that a TCAM rule is expressed as a
combination of objects presented in a logical model at switch
S>. If the 5th and 6th TCAM rules in the figure are absent
from TCAM, all the traffic between EPG:App and EPG:DB via
port 700 would be dropped. The absence of correct rules boils
down to a case where one or more objects are not rendered
correctly in TCAM; a corrupted TCAM may write a wrong
VREF identifier (ID) or EPG ID for those rules; S> may drop
the filter ‘port 700/allow’ from its logical view due to software
bug. Such absence or mispresentation of objects directly affect
the EPG pairs that share the objects. Thus, shared risk objects
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for App-DB EPG pair are VRF:101, EPG:App, EPG:DB,
Contract: App-DB, Filter:80/allow, and Filter:700/allow.

A. A case study in a production cluster

A key aspect of shared risks is that they can create different
degree of damages to EPG pairs. If an incorrect VRF ID is
distributed from the controller to switch agents, all pairs of
EPGs belonging to the VRF would be unable to communicate.
In contrast, if one filter is incorrectly deployed in one switch,
the impact would be limited to the endpoints in the EPG
pairs that are directly connected to the switch (and to other
endpoints that might attempt to talk to those endpoints).

In a network policy, a large number of EPG pairs may
depend on a shared risk (object) and/or a single EPG pair may
rely on multiple shared risk objects. These not only signify the
criticality of a shared risk but also the vulnerability of EPG
pairs. More importantly, a dense correlation between shared
risks and EPG pairs makes it promising to apply risk modeling
techniques to fault localization of network policy deployment.

To understand the degree of sharing between EPG pairs and
policy objects, we analyze policy configurations from a real
production cluster that comprises about 30 Cisco’s nexus 9000
series switches, one APIC, and hundreds of servers. Figure 3
shows the cumulative distribution function on the number of
EPG pairs sharing a policy object, from which we make the
following observations:

e A failure in deploying VRF would lead to a breakdown
of a number of EPG pairs. A majority of VRF objects
has more than 100 EPG pairs. 10% VRFs are shared by
over 1,000 EPG pairs and 2-3% VRFs by over 10,000
EPG pairs.

o EPGs are configured to talk to many EPGs. About 50% of
EPGs belong to more than 100 EPG pairs, which implies
that the failure of an EPG is communication outage with
a significant number of EPGs.

o The failure of a physical object such as switch would
create the biggest impact on EPG pairs. About 80% of
switches maintain at least 1,000s of EPG pairs.

o Contract and filter are mostly shared by a small number
of EPG pairs. 70% of the filters and 80% of the contracts
are used by less than 10 EPG pairs.

EPG pair Shared Risks

EPG:Web
.

L4

4
»’ _4 Contract:Web-App
""

Contract:App-DB
Filter:port700/allow

(a) Switch risk model for switch S>. When the 1st
rule is missing from the TCAM in S, in Figure 2,
the edges associated with the Web-App EPG pair
are marked as fail (details in §III-C).

Switch- Shared Risks

EPGs tuple

fail coce
success

(b) Controller risk model for tenant network pol-
icy shown in Figure 1(b). Here, only edges asso-
ciated with the S>-Web-App are marked as fail,
because a rule (Ist rule in Figure 2) is missing
only in S, but the corresponding rule is present
in other switches S and S3.

Fig. 4. Risk models for policy fault localization.

From these observations, it is evident that failures in a
shared risk affect a great number of EPG pairs. Consider a
problematic situation where admins see numerous high alerts
that indicate a communication problem between a number of
EPG pairs, all because of a few shared risk failures. In this
case, it is notoriously hard to inspect individual EPG pairs
and find out the underlying faulty risk objects. However, this
high dependency also makes spatial correlation hold promise
in localizing problematic shared risks among a huge number
of shared risks in large-scale networks.

B. Risk models

We adopt a bipartite graph model that has been actively used
to model risks in the traditional IP network [11]. A bipartite
graph demonstrates associations between policy objects and
the elements that would be affected by those objects. At one
side of the graph are policy objects (e.g., VRF, EPG, filter,
etc.); and the affected elements (e.g., EPG pairs) are located



at the other side. An edge between a pair of nodes in the
two parties is created if an affected element relies on a policy
object under consideration.

In modeling risks for network policy, one design question
is how to represent risks in the 3-tier deployment hierarchy
that involves controller, switch agent and TCAM. During rule
deployment, there are two major places that eventually cause
the failure of TCAM rule update—one from controller to
switch agent and the other from switch agent to TCAM. The
former may cause global faults whereas the latter does local
faults. For instance, if the controller cannot reach out to a large
number of switches for some reason, the policy objects across
those unreachable switches are not updated. On the other hand,
when one switch is unreachable, a switch agent misbehaves, or
TCAM has hardware glitches, the scope of risk model should
be restricted to a particular switch level. Thus, in order to
capture global- and local-level risks properly, we propose two
risk models: (i) switch and (ii) controller risk model.

Switch risk model. A switch risk model can be built on per-
switch basis and it consists of shared risks (i.e., policy objects)
and the elements (i.e., EPG pairs) that can be impacted by
the shared risks. The model is built from a network policy
and the EPGs that has endpoints connected to a switch.
Figure 4(a) shows an example of switch risk model for switch
S, given the local view on network policy in Figure 1(c). The
left-hand side in the model shows all EPG pairs deployed
in switch S>. Each EPG pair has an edge to those policy
objects (on the right-hand side in the model) that it relies
on in order to allow traffic between endpoints in the EPG
pair. For instance, the Web-App EPG pair has outgoing edges
to EPG:Web, EPG:App, VRF:101, Filter:port§0/Allow, and
Contract:Web-App. An edge is flagged as either success or
fail, soon discussed in §III-C.

Controller risk model. A controller risk model captures
shared risks and their relationships with vulnerable elements
across all switches in the network. It is constructed in a similar
manner of a switch risk model. We create a triplet with a
switch ID and an EPG pair because the triplet allows to clearly
distinguish whether an object deployment failed at a particular
switch or in all switches to which end-points in EPG pair are
connected. A triplet has edges to policy objects that the EPG
pair relies on in that specific switch. Since the same policy
object can be present in more than one switch, an EPG pair in
multiple switches can have an edge to the object. Figure 4(b)
shows the controller risk model for tenant network policy
presented in Figure 1(b).

C. Augmenting risk models

In a conventional risk model, when an element affected
by shared risks experiences a failure, it is referred to as an
observation. In case of switch risk model, an EPG pair is an
observation when endpoints in the EPG pair are allowed to
communicate but fail to do so.

In our work, an observation is made by collecting the
TCAM rules (T-type rules) deployed across all switches peri-

odically and/or in an event-driven fashion, and by conducting
an equivalence check between logical TCAM rules (L-type
rules) converted from the network policy at the controller
and the collected T-type rules. For this, we use an in-house
equivalence checker. The equivalence check is to compare two
reduced ordered binary decision diagrams (ROBDDs); one
from L-type rules, and the other from T-type rules. If both
ROBDDs are equivalent, there is no inconsistency between
the desired state (i.e., the network policy) and actual state
(i.e., the collected TCAM rules). If not, the tool generates a
set of missing TCAM rules that explains the difference and
that should have been deployed in the TCAM but absent from
the TCAM. Those missing rules allow to annotate edges in the
risk models as failure, thereby providing more details on po-
tentially problematic shared risks. Note that simply reinstalling
those missing rules is a stopgap, not a fundamental solution
to address the real problem that creates state inconsistency.
Potentially, the L-T equivalence checker can produce a large
number of missing rules. As demonstrated by our study on
dependencies between objects (§III-A and Figure 3), one ill-
presented object at controller and/or switch agent can cause
policy violations for over thousands of EPG pairs and make
thousands of rules missing from the network. Unfortunately,
it is expensive to do object-by-object checking present in the
observed violations. Thus, we treat all objects in the observed
violations as a potential culprit. We then mark (augment)
the edges between the malfunctioning EPG pair (due to the
missing rule) and its associated objects in the violation as fail.
Figure 4(a) illustrates how the switch risk model is aug-
mented with suspect objects if the 1st rule is missing from
the TCAM in S, in Figure 2. To pinpoint culprit object(s),
one practical technique is to pick object(s) that explains the
observation best (i.e., the famous Occam’s Razor principle); in
this example, EPG:Web and Contract:Web-App would explain
the problem best as they are solely used by the Web-App
EPG pair. The lack of the augmented data would make it hard
to localize fault policy objects as it suggests that all objects
appear equally plausible. Note that the example is deliberately
made simple to ease discussion. In reality many edges between
EPG pairs and shared risks can be marked as fail (again, see
Figure 3 for the high degree of dependencies between objects).

IV. FAULT LOCALIZATION

We now build a fault localization algorithm that exploits the
risk models discussed in §III. We first present a general idea,
explain why the existing approach falls short in handling the
problem at hand and lastly describe our proposed algorithm.

A. General idea

In the switch risk model, for instance, an EPG pair is marked
as fail, if it has at least one failed edge between the pair and
a policy object (see Figure 4(a)). Otherwise, the EPG pair is
success. Each EPG pair node marked as fail is an observation.
A set of observations is called a failure signature. Any policy
object shared across multiple EPG pairs becomes a shared risk.



If all edges to an object are marked as fail, it is highly
likely that the failure of deploying that object explains the
observations present in the failure signature, and such an object
is added to a set called hypothesis. Recall in Figure 4(a) that
the EPG:Web and Contract:Web-App objects best explain the
problem of Web-App EPG pair. On the other hand, other
objects such as VRF:101 and EPG:App are less likely to be
the culprit because they are also shared by App-DB EPG pair
which has no problem. An ideal algorithm should be able to
pick all the responsible policy objects as a hypothesis.

In many cases, localizing problematic objects is not as
simple as shown in Figure 4(a). Multiple object failures can
occur simultaneously. In such a case, it is prohibitive to explore
all combinations of multiple objects that are likely to explain
all of the observations in a failure signature. Therefore, the key
objective is to identify a minimal hypothesis (in other words,
a minimum number of failed objects) that explains most of the
observations in the failure signature. An obvious algorithmic
approach would be finding a minimal set of policy objects that
covers risk models presented as a bipartite graph. This general
set cover problem is known to be NP-complete [13].

B. Existing algorithm: SCORE

We first take into account a greedy approximation algorithm
used by SCORE [11] system that attempts to solve the min
set coverage problem and that offers O(logn)-approximation
to the optimal solution [11], where n is the number of affected
elements (e.g., EPG pairs in our problem). We first explain the
SCORE algorithm and further discuss its limitation.

Algorithm. The greedy algorithm in the SCORE system picks
policy objects to maximize two utility values—(i) hit ratio and
(ii) coverage ratio—computed for each shared risk. We first
introduce a few concepts in order to define them precisely
under our switch risk model. The same logic can be applied
to the controller risk model.

Let G; be a set of EPG pairs that depend on a shared risk
i, O; be a subset of G; in which EPG pairs are marked as fail
(observations) due to failed edges between the EPG pairs and
the shared risk i, and F be the failure signature, a set of all
observations, i.e., F = |JO; for all i. For shared risk i, a hit
ratio, A; is then defined as:

hi =GN 0i|/|Gi| = |0i|/|Gi|

In other words, a hit ratio is a fraction of EPG pairs that are
observations out of all EPG pairs that depend on a shared risk.
A hit ratio is 1 when all EPG pairs that depend on a shared
risk are marked as fail. And a coverage ratio, ¢; is defined as:

¢i =|GiNOil/|F| =[0il/|F|

A coverage ratio denotes a fraction of failed EPG pairs
associated with a shared risk from the failure signature.

The algorithm chooses shared risks whose hit ratio is above
some fixed threshold value. Next, given the set of selected
shared risks, the algorithm outputs those shared risks that
have the highest coverage ratio values and that maximize the
number of explained observations.

Algorithm 1 Scourt (F, R, C)

1: > F: failure signature, R: risk model, C: change logs
2: > P: unexplained set, Q: explained set, H: hypothesis
3 P—F; 0«0, H+0
4: while P # 0 do
5: K<+ 0
6
7
8
9

> K: a set of shared risks
for observation o € P do
objs < getFailedObjects(o,R)
updateHitCovRatio(objs,R)
: K<+ K{Jobjs

10 end for

11: SfaultySet + pickCandidates(K)

12: if faultySet =0 then

13: break

14: end if

15: affected + GetNodes(faultySet,R)

16: R < Prune(affected,R)

17: P+ P\affected; Q< QUaffected

18: H < HU faultySet

19: end while

20: if P # 0 then

21: for observation o € P do

22: objs < lookupChangeLog(o,R,C)
23: H <+ HJobjs

24: end for

25: end if

26: return H

Limitation. The algorithm treats a shared risk with a small hit
ratio as noise and simply ignores it. However, in our network
policy fault localization problem, we observe that while some
policy objects such as filter have a small hit ratio (= 0.01),
they are indeed responsible for the outage of some EPG pairs.
The algorithm excludes those objects, which results in a huge
accuracy loss (results in §VI-B).

It turns out that not all EPG pairs that depend on the object
are present in the failure signature. For instance, suppose that
100 EPG pairs depend on a filter, which needs 100 TCAM
rules. In this case, if one TCAM rule is missing, a hit ratio
of the filter is 0.01. This can happen if installing rules for
those EPG pairs is conducted with a time gap. For instance,
99 EPG pairs are configured first, and the 100th EPG pair is
a newly-added service, hence configured later.

To make it worse, in reality the hit ratio can vary signif-
icantly too. In the previous example, if 95 TCAM rules are
impacted, the hit ratio is 0.95. The wide variation of hit ratio
values can occur due to (1) switch TCAM overflow; (2) TCAM
corruption [14] that causes bit errors on a specific field in a
TCAM rule or across TCAM rules; and (3) software bugs [15]
that modify object’s value wrong at controller or switch agent.
While the SCORE algorithm allows change of a threshold
value to handle noisy input data, such a static mechanism
helps little in solving the problem at hand, confirmed by our
evaluation results in §VI.



Algorithm 2 pickCandidates(riskVector)
1: hitSet <+ 0

maxCovSet < O
for risk r € riskVector do

if hitRatio(r) =1 then

hitSet < hitSet | J{r}

end if
end for
maxCovSet + getMaxCovSet (hitSet)
return maxCovSet

R e A S ol

C. Proposed algoirthm: SCOUT

We propose SCOUT algorithm that actively takes into ac-
count policy objects whose hit ratio percentage is less than
100% and thus overcomes the limitation of the SCORE
algorithm. Basically, our algorithm also greedily picks the
faulty objects and outputs hypothesis that has a minimal set
of objects most likely explains all the observations in a failure
signature.

Algorithm 1 shows the core part of our fault localization
algorithm. The algorithm takes failure signature F' and risk
model R as input. F has a set of observations, e.g., EPG pairs
marked as fail in the switch risk model. For each observation
in F, the algorithm obtains a list of policy objects with fail
edges to that observation and computes the utility values (i.e.,
hit and coverage ratios) for all those objects (lines 6-10). Then,
based on the utility values of shared risks in the model, the
algorithm picks a subset of the shared risks and treats them
as faulty (line 11 and Algorithm 2). In Algorithm 2, if the hit
ratio of a shared risk is 1, the risk is included in a candidate
risk set (lines 3-7); and then from the set, the shared risks
that have the highest coverage ratio values are finally chosen;
i.e., a set of shared risks that covers a maximum number of
unexplained observations (line 8).

If faultySet is not empty, all EPG pairs that have an edge
to any shared risk in the faultySet are pruned from the model
(lines 15-16), and failed EPG pairs (observations) are moved
from unexplained to explained (line 17). Finally, all the shared
risks in the faultySet are added to the hypothesis set, H. This
process repeats until either there are no more observations left
unexplained or when faultySet is empty.

Some observations may remain unexplained because the
shared risks associated with those observations have a hit ratio
less than 1 and thus are not selected during the above candidate
selection procedure. To handle the remaining unexplained ob-
servations, the SCOUT algorithm searches logs about changes
made to objects (which are obtained from the controller),
and selects the objects to which some actions are recently
applied (lines 21-24 in Algorithm 1). Despite its simplicity,
this heuristic makes huge improvement in accuracy (§VI-B).

Example. Figure 5 shows an example of how the Scout
algorithm works. The lines 4-19 in Algorithm 1 cover the
following: (i) filter F2 is identified as a candidate because
it has the highest coverage ratio among the shared risks with

E1-E2 || E2-E3 E4-E5

(E3-£4)

(Es-£6)(E6-E7) (E5-E6)(EBE7)

»

C1 F1 F2 Cc2 C3 F3 C3 F3

h=1 h=0 h=1 h=1 h=0.3 h=0.3 h=0.5 h=0.5

c=04 c=0 c=0.8 ¢c=04 ¢c=0.2 ¢c=0.2 c=05 ¢=05
Hypothesis (H) = {F2} H={F2,F3}

Fig. 5. An illustration of SCOUT algorithm using a switch risk model. Edges
and nodes in red color are fail and those in black are success. Note that &
refers to hit ratio and ¢ to coverage ratio.

a hit ratio of 1; (ii) all the EPG pairs that depend on F2 are
pruned from the model; (iii) and F2 is added to hypothesis. The
lines 21-24 ensure that the algorithm adds filter F3 (assuming
F3 is lately modified) to the hypothesis since there are no
shared risks with a hit ratio of 1.

V. SCOUT SYSTEM

We present SCOUT system that can conduct an end-to-end
analysis from fault localization of policy objects to physical-
level root cause diagnosis. The system mainly consists of (i)
fault localization engine and (ii) event correlation engine. The
former runs the proposed algorithm in §IV-C and produces
policy objects (i.e., hypothesis) that are likely to be responsible
for policy violation of EPG pairs. The latter correlates the
hypothesis and two system-level logs from the controller and
network devices, and produces the most-likely root causes at
physical level that caused object failures. Our prototype is
written in about 1,000 lines of Python code. We collect the
logical network policy model and its change logs from Cisco’s
application centric controller, and switch TCAM rules and the
device fault logs from Nexus 9000 series switches. Figure 6
illustrates the overall architecture of SCOUT system.

A. Physical-level root cause diagnosis

Knowing root causes at a physical level such as control
channel disruption, TCAM overflow, bugs, system crashes, etc.
that made the objects faulty is as equally important as fixing
faulty objects in the network policy. In general, when a trouble
ticket (e.g., EPGs cannot talk) is raised, the current practice
is to narrow down a possible root cause by analyzing system
logs generated by the network devices. However, in reality,
a majority in a myriad of log data is often irrelevant to the
fault that caused the trouble. Though filtering out such noises
can be done to some extent by correlating the logs with the
generation time of the trouble ticket, but not effective enough
to reduce search space. In addition, log analysis may fail to
associate the root cause (i.e., physical-level fault) with a policy
deployment failure accurately.

To tackle the root cause analysis problem -effectively,
ScourT first runs the L-T equivalence checker and then uses
the fault localization engine to quickly narrow down a large
number of observations (i.e., missing rules) to a few faulty
policy objects. Next, with the timestamps on changes to the
faulty objects (from the change logs of the network policy
controller), the event correlation engine selects a small set of
physical faults (based on the timestamps in the fault logs). The



TCAM rules (T) | |Logical model (L)

[ L-T equivalence checker

Fault localization engine

® Build controller and switch risk models
e Augment the models with failure data
® Run Scout fault localization algorithm Ji

Policy change logs
from controller

Network fault logs
from devices

Event correlation engine

Most likely
root causes

Missing rules

HypotHesis

Fig. 6. Overview of SCOUT system.

engine finally infers the most likely physical-level root cause
by correlating the faults and the affected objects.

Specifically, the engine works in three simple steps: (i) Us-
ing the hypothesis, it first identifies a set of change logs that
it has to examine; (ii) with the timestamps of those change
logs, it then narrows down the relevant fault logs (those
logged before the policy changes and keep alive); and (iii) it
finally associates impacted policy objects with the physical-
level fault(s) found in the relevant fault logs and outputs them.
Note that details on fault types, fault properties and change
logs used by SCOUT can be found in [16].

The engine is pre-configured with signatures for known
faults (e.g., disconnected switch, TCAM overflow), composed
by network admins with their domain knowledge and prior
experience. When fault logs match a signature, faults are
identified and associated with the impacted policy objects.
Otherwise, the objects are tagged with ‘unknown’. Signatures
can be flexibly added to the engine, and the system’s ability
would be naturally enhanced with more signatures. Note
that the event correlation engine is a proof of concept to
demonstrate the efficacy of our algorithm on the root cause
analysis; the engine may be replaced with expert systems that
do sophisticated analysis on the fault logs. Such integration is
left as part of future work.

B. Example usecases

We create three realistic use cases in a testbed and demon-
strate the workflow of our system and its efficacy on fault
localization. For this we use the network policy for the 3-
tier web service shown in Figure 1(a). We mimic a dynamic
change of the network policy by continuously adding one new
filter after another to the Contract: App-DB object. This would
eventually cause TCAM overflow. As a second case, we make
a switch not respond to the controller in the middle of updates,
by silently dropping packets to the switch.

TCAM overflow. Due to TCAM overflow, several filters were
not deployed at TCAM. The switch under test generated fault
logs that indicate TCAM overflow when its TCAM utilization
was beyond a certain level. Our system first localized the
faulty filter objects using fault localization engine, obtained
the change logs generated for ‘add filter’ instruction, and
subsequently filter the fault logs that were active when changes
are made. The event correlation engine had the fault signature
of TCAM overflow, so it was able to match the fault logs with
that signature and tag those failed filters accordingly.

Unresponsive switch. In this use case, the switch under
test became unresponsive while the controller was sending

the ‘add filter’ instructions to the switch. The equivalence
checker reported that the rules associated with some filters
were missing. Then, the SCOUT algorithm localized those
filters as faulty objects. Using filter creation times from the
change logs and the fault logs that indicate the switch was
inactive (both maintained at the controller), the correlation
engine was able to detect that filters were created when the
switch was inactive.

Too many missing rules. As a variant of the above scenario,
we pushed a policy with a large number of policy objects
onto the unresponsive switch. We found out that more than
300K missing rules were reported by the equivalence checker.
Without fault localization, it is extremely challenging for
network admins to identify the set of underlying objects
that are fundamentally responsible for the observed failures.
ScouUT narrowed it down and reported the unresponsive switch
as the root cause behind these huge number of rule misses.

Note that not all faults (e.g., TCAM corruption) discussed
in §II-B create fault logs. Even in such cases, the fault
localization engine would still be useful in reducing the search
scope (e.g., problematic switch).

VI. EVALUATION

We evaluate SCOUT in terms of (i) suspect set reduction,
(i1) accuracy, and (iii) scalability. We mean by suspect set
reduction a ratio, y between the size of hypothesis (a set of
objects reported by SCOUT) and the number of all objects
that failed EPG pairs rely on; the smaller the ratio is, the less
objects network admins should examine. As for accuracy, we
use precision (|(GNH|/|H|) and recall ((GNH|/|G|) where H is
hypothesis and G is a set for ground truth. A higher precision
means fewer false positives and a higher recall means fewer
false negatives. Finally, we evaluate scalability via measuring
running times across different network sizes.

A. Evaluation environment

Setup. We conduct our evaluation under two settings.

Simulation: We build our simulation setup with network
policies used in our production cluster that comprises about
30 switches and 100s of servers. The cluster dataset contains
6 VRFs, 615 EPGs, 386 contracts, and 160 filters.

Testbed: We build a network policy that consists of 36
EPGs, 24 contracts, 9 filters, and 100 EPG pairs, based on
the statistics of the number of EPGs and their dependency on
other policy objects obtained from the above cluster dataset.

Fault injection. We define two types of faults that cause in-
consistency between network policy and switch TCAM rules.
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Fig. 7. Suspect set reduction.

The injected faults resemble the rule misses due to physical-
level failures discussed in §II-B. (i) Full object fault means
that all TCAM rules associated with an object are missing.
(ii) Partial object fault is a fault that makes some of the EPG
pairs that depend on an object fail to communicate. That is,
some TCAM rules associated with the object are missing. For
both simulation and experiment, we randomly generate the two
types of faults with equal weight. The ground truth G has the
selected faulty objects.

B. Results

Suspect set reduction. We first compare the size of hypothesis
with the number of policy objects (a suspect set) that EPG
pairs in failure depend on. We use the metric y defined earlier
for this comparison. Figure 7 shows the suspect set reduction
ratio in the simulation and testbed. We generate 1,500 faults of
object in the simulation and 200 faults of object in the testbed;
for each object fault, we compute the total number of objects,
that the EPG pairs impacted by the faulty object depend on.
From the figure, we see Y is less than 0.08 in most cases.
SCouT reports at maximum 10 policy objects in the hypothesis
whereas without fault localization there are as many as a
thousand policy objects to suspect. This smaller y value means
that network admins need to examine a relatively small number
of objects to fix inconsistencies between a network policy and
deployed TCAM rules. Therefore, SCOUT can greatly help
reduce repair time and necessary human resources.

Accuracy. While it is great that SCOUT produces a handful of
objects that require investigation, a more important aspect is
that the hypothesis should contain more number of truly faulty
objects and less number of non-faulty objects. We study this
using precision and recall. In addition, we compare SCOUT’s
accuracy with SCORE’s. We use two different error threshold
values for SCORE to see if changing parameters would help
improve its accuracy.

Figures 8(a) and 8(b) show precision and recall of fault lo-
calization with multiple number of simultaneous faulty objects
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Fig. 8. Fault localization performance on switch risk model. X in SCORE-X
is an error threshold set for hit ratio. The results are averaged over 30 runs.
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Fig. 9. Fault localization performance on controller risk model with faulty
policy objects across switches. Each data point is an average over 30 runs.

(x-axis) in the switch risk model. From the figures, we observe
ScouT’s recall is 20-30% better than SCORE’s without any
compromise on precision. The error threshold values make
little change in the performance of SCORE. Also, the high
recall of SCOUT suggests that SCOUT can always find most
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Fig. 10. Fault localization performance when policy objects fail to be
deployed in a switch. Each data point is an average over 10 runs.

faulty objects. Moreover, high precision (close to 0.9) suggests
fewer false positives. For instance, with 10 faulty objects in
the network policy, SCOUT reports on average one additional
object as faulty. In Figures 9(a) and 9(b) we observe similar
trends for the controller risk model.

Figures 10(a) and 10(b) compare the accuracy of SCOUT
and SCORE with up to 10 simultaneous faults in the testbed.
SCORE’s error threshold is set to 1. From the figures, we ob-
serve SCOUT’s recall is much better (20-50%) than SCORE’s
while its precision is comparable to SCORE’s. SCOUT detects
all faulty objects when there are less than four faults, i.e., with
100% recall and about 98% precision. When there are five or
more faults, SCOUT’s accuracy (especially, recall) begins to
decrease. The difference in accuracy between the simulation
and testbed setup is mainly because of a low degree of risk
sharing among EPG pairs in the testbed, when compared to
the simulation dataset obtained from the production cluster.

Scalability. We measure running time of SCOUT under a
controller risk model from the network policy deployed in
10 switches in the production cluster. We scale the model up
to 500 switches by adding new EPG and switch pairs. We
observe that SCOUT takes about 45 and 130 seconds with 200
and 500 switches respectively, on a machine with a 4-core 2.6
GHz CPU and 16GB memory.

VII. RELATED WORK

A large body of research work has been conducted for
network fault localization [11], [17], [18], [19], [20], [21],
[22], [23], [24]. Most of them focus on failures involving
physical components such as fibre-optic cable disruption,
interface down, system crash, etc. Our work focuses on fault

localization of the network policy configuration process rather
than that of low-level physical components. Thus, the context
of our work is quite different from that of these prior works.

A number of recent approaches [25], [26], [27], [28],
[29], [14], [30] enable debugging network problems in the
dataplane (e.g., queuing delays, faulty link) that impact packet
forwarding behavior. Many of them [25], [26], [27], [29],
[14] collect debugging information by installating low-level
rules in the network switch either dynamically or statically.
In contrast, SCOUT system does not target detecting problems
in the data plane. Instead, it focuses on fault localization of
policy deployment failures. For this, it relies on logical model
(L), TCAM rules (T), policy change logs and failure logs,
rather than installing low-level rules.

Network provenance systems [31], [32] keep track of events
associated with packets and rules while SCOUT only compares
network policies with actual rules deployed in the network.

Systems like Anteater [9], Veriflow [33], and HSA [10]
check for violation of invariants in network policies on a data
plane snapshot that includes ACLs and forwarding rules. In
particular, Anteater shares some similarity with the equiva-
lence checker used by SCOUT in that both of them require
access to TCAM rules. Unlike these systems, SCOUT focuses
on localizing the part of the policy that is not deployed
correctly. Overall, SCOUT compliments such approaches as it
assists debugging in management plane via fault localization.

Other works [1], [3], [4], [5], [2], [34], [35], [36] focus
on the automation of conflict-free, error-free composition and
deployment of network policies. While these frameworks are
greatly useful in managing network policies, it is hard to
completely shield their management plane from failures that
cause the inconsistency. SCOUT can identify the impacted
network policies, thus useful in reinstating the network policies
when these frameworks may not work correctly.

VIII. CONCLUSION

Network policy abstraction enables flexible and intuitive
policy management. However, it also makes network trou-
bleshooting prohibitively hard when network policies are not
deployed as expected. In this paper, we introduced and solved
a network policy fault localization problem where the goal is to
identify faulty policy objects that have low-level rules go miss-
ing from network devices and thus are responsible for network
outages and policy violations. We formulated the problem with
risks models and proposed a greedy algorithm that accurately
pinpoints faulty policy objects and built SCOUT, an end-to-
end system that automatically pinpoints not only faulty policy
objects but also physical-level failures.
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