
Implementing AES Encryption on Programmable Switches via
Scrambled Lookup Tables

Xiaoqi Chen
Princeton University

xiaoqic@cs.princeton.edu

ABSTRACT
AES is a symmetric encryption algorithmwidely used inmany appli-
cations. An AES implementation in the data plane can help us build
in-network security and privacy applications, such as IP header
encryption or onion routing. However, it is not straightforward
to implement AES on today’s commodity programmable switches,
which may not include a dedicated cryptography co-processor and
support only simple arithmetic operation and table lookup. In this
paper, we present the Scrambled Lookup Table technique for re-
ducing the number of sequential arithmetic operations required for
AES encryption, by utilizing the table matching capability available
on programmable switches. We demonstrate an e�cient implemen-
tation of AES on the Barefoot To�no programmable switch that
encrypts 10.92Gbit, 8.76Gbit, and 7.37Gbit of data per second, for
AES-128, -192, and -256 respectively, using less than 15% of the
switch memory.

CCS CONCEPTS
• Networks ! Data path algorithms; • Security and privacy
! Block and stream ciphers.

KEYWORDS
Data Plane, P4, AES
ACM Reference Format:
Xiaoqi Chen. 2020. Implementing AES Encryption on Programmable Swi-
tches via Scrambled Lookup Tables. In ACM SIGCOMM 2020 Workshop
on Secure Programmable Network Infrastructure (SPIN 2020) (SPIN ’20), Au-
gust 14, 2020, Virtual Event, NY, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3405669.3405819

1 INTRODUCTION
Secure cryptographic primitives are critical building blocks for
today’s secure and private network protocols. Currently, these pro-
tocols are often executed in an end-to-end fashion, while network
middle-boxes are often considered as a threat vector for man-in-the-
middle attacks. As a consequence, cryptographic primitive func-
tions like symmetric ciphers and hash functions are often run on
end hosts, either on general-purpose CPUs or on dedicated crypto-
graphic accelerator co-processors. More complex use cases beyond

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SPIN ’20, August 14, 2020, Virtual Event, NY, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8041-6/20/08. . . $15.00
https://doi.org/10.1145/3405669.3405819

end-to-end security, such as the anonymity-preserving Onion Rout-
ing network (Tor), are often run in an overlay network.

The prevalence of high-throughput programmable switches has
enabled researchers to propose various ways these devices can im-
prove the privacy and security of our networks. For example, we
can design e�cient Tor-like anonymous onion routing directly be-
tween switches, protect user tra�c from tampering [5] and surveil-
lance [4], or make network measurements more secure [13] and
anonymous [7]. Yet, early implementation of these ideas on pro-
grammable switches used custom-built cryptography functions that
did not achieve the highest level of security, enabling powerful ad-
versaries to attack the in-network application. For example, when a
tra�c anonymizer [7] uses CRC32 as its hash function, an adversary
may exploit the linearity of CRC32 and launch a known-plaintext
attack to breach data anonymity.

One reason researchers use unsafe cryptography primitives in
their prototypes might be that implementing standardized cryp-
tography primitives on programmable switches is perceived as re-
quiring too much engineering e�ort and/or costing too much of
the limited hardware resources available. In fact, as far as we know,
there is no published implementation of any standardized secure
cryptographic primitives for P4 programmable switches. Such im-
plementation will help improve the security against adversaries for
many existing security-oriented data-plane applications.

Advanced Encryption Standard (AES), previously known as the
Rijndael algorithm [12] before its standardization, is one of the most
widely used symmetric cryptography algorithms today, supporting
countless secure protocols and network applications. It is a block
cipher with 128-bit blocks, meaning the algorithm encrypts 128 bits
of cleartext into 128 bits of ciphertext at a time; di�erent variants of
AES use di�erent encryption key sizes, including 128 bits, 192 bits,
and 256 bits. The algorithm consists of multiple encryption rounds
(10, 12, or 14), each having four steps; we defer the details to Sec-
tion 2. Due to its popularity, modern CPUs have special instruction
sets (e.g., AES-NI [14]) speci�cally for computing one round of AES
encryption. In the meantime, many e�orts have been made to adapt
AES into resource-constrained hardware environments, such as
embedded systems with power constraints or memory constraints,
but none are directly applicable to the execution environment of a
programmable switch.

In this paper, we notice that a programmable switch imposes
strict computational constraint, while having more memory than
embedded systems. We therefore present the Scrambled Lookup
Table technique for implementing AES, tailored for programmable
network switches using the Recon�gurable Match-action Table
(RMT) architecture [2]. We exploit the relatively abundant table

8

https://doi.org/10.1145/3405669.3405819
https://doi.org/10.1145/3405669.3405819

SPIN ’20, August 14, 2020, Virtual Event, NY, USA Xiaoqi Chen

lookup memory on RMT switches and create many di�erent per-
muted lookup tables using the encryption key, to further reduce
the number of XOR operations required per encryption round.

With the Scrambled Lookup Table technique, we successfully
implement the AES algorithm on a Barefoot To�no Wedge-32X pro-
grammable switch. With the limited number of hardware pipeline
stages available, our prototype implementation can calculate two
AES rounds per pipeline pass for one 16-byte data block; it uses pac-
ket recirculations to let a data packet traverse the pipeline multiple
times. Thus, we can complete AES-128 encryption (10 rounds) for
a 16-byte payload in �ve pipeline passes, or AES-192/-256 (12/14
rounds) in six or seven pipeline passes, respectively. As our pro-
totype implementation only uses a modest fraction of the switch
memory, it can be combined with other networking functionali-
ties, acting as a building block for designing more sophisticated
secure and private network architectures built upon commodity
programmable switches.

The rest of this paper is structured as follows. We discuss more
details about AES algorithm, existing optimizations, and the hard-
ware constraints of RMT-based programmable switches in §2. In §3,
we present the Scrambled Lookup Table technique that optimizes
our AES implementation for the switch data plane. §4 presents a
working prototype of our AES implementation on a Barefoot To�no
programmable switch, and §5 shows experimental evaluation for
the prototype. §6 discusses future works and §7 concludes the paper.

2 BACKGROUND
In this section, we introduce the AES algorithm and some existing
hardware-friendly optimizations in more detail, as well as pro-
vide a brief overview of the programming model of the RMT pro-
grammable switch architecture.

2.1 The AES Algorithm
In 2001, the National Institute of Standards and Technology (NIST)
selected Rijndael algorithm as the Advanced Encryption Standard
(AES) [11]. AES was designated to be used by the US government
to encrypt sensitive data, and later also used for classi�ed data; it is
also widely used by many commercial and open-source software.

AES [11] is a symmetric block cipher algorithm: given the en-
cryption key, it encrypts a 128-bit (16-byte) data block into a 128-bit
ciphertext; it can also decrypt the ciphertext block back to cleartext
data, when the same encryption key is provided. AES supports
di�erent sizes of encryption keys (128, 192, or 256 bits), and these
variants are commonly referred to as AES-128, AES-192, and AES-
256.

The AES algorithm encrypts a data block by repeatedly applying
encryption "rounds". The 16-byte data block is organized as a 4-by-4
matrix, with each cell holding one byte. Each encryption round
consists of the following four steps, as illustrated in Figure 1:

(1) AddRoundKey: The data block is XORed with a key block,
cell by cell. The round-speci�c key block is derived from the
encryption key and the round number.

(2) SubBytes: Each byte in the block is replaced through a �xed
lookup table, called the Substitution box (S-box).

(3) ShiftRows: Each row in the data block is cyclically shifted
by 0, 1, 2, or 3 locations.

(4) MixColumns: The four bytes in each column are interpreted
as a polynomial under the �nite �eld⌧� (28), and multiplied
by a special polynomial 3G3 + G2 + G + 2; the result (modulus
G4 + 1) is interpreted as the four bytes of the output column.

The algorithm completes after repeating the encryption round
for 10, 12, or 14 times (for AES-128, -192, and -256 variants respec-
tively), with minor changes in the last round. The three variants
only di�er in their key sizes and number of rounds required, while
the procedure for encryption rounds remains the same. Decryption
rounds are similar to encryption rounds, with the four steps per-
formed in reverse and an inversed S-box. Due to space constraints,
we defer the interested readers to the full algorithm proposal [11]
for a more detailed description of the AES algorithm.

2.2 Prior AES Optimizations
We now brie�y survey a few existing works on optimizing AES
algorithms for other resource-constrained scenarios, including em-
bedded devices and low-power circuits.

The authors of the Rijndael algorithm proposed the “T-table”
approach for calculating AES rounds on 32-bit processors, which
is discussed in Section 5.3.2 of the original Rijndael algorithm pro-
posal [3]. Each AES round can be implemented using four lookup
tables and XORs only, avoiding the expensive polynomial multi-
plications under ⌧� (2). This approach signi�cantly accelerated
the computation, at the cost of larger memory space required: it
requires four lookup tables each using 256 ⇥ 4 bytes, while the
original algorithm only requires 256 bytes for storing the S-box.
Khairallah et al. [6] further optimized AES using lookup tables,
making hardware-aware optimizations speci�c to the FPGA archi-
tecture. Luo et al. [9] also optimized AES using lookup tables for
power-constrained use cases in wireless networks.

Embedded devices have very limited memory and computational
power; in some cases, they cannot even store the entire S-box.
Morioka and Satoh [10] and Wolkerstorfer et al. [15] present opti-
mizations for e�ciently calculating the S-box entries on the �y.

2.3 RMT Programmable Network Switches
Recon�gurable Match-action Table (RMT) is a programmable net-
work switch architecture proposed by Bosshart et al. [2] that sup-
ports versatile yet high-performance network packet processing.
In this section, we brie�y describe the computation model of RMT
switches.

At a high level, a RMT switch �rst uses a programmable pac-
ket parser to parse program-speci�c protocol headers and extract
header �elds from the input packet, then uses a pipeline of match-
action tables to match on those header �elds and metadata variables
and perform actions to modify them, and �nally uses a deparser to
emit the output packet.

A match-action table �rst matches on particular packet header
�elds or metadata variables, then takes a particular action to change
some header �elds ormetadata variables. Amatch-action table hosts
many match rules and their associated actions. In particular, an ac-
tion may perform an arithmetic operation over metadata variables,
including XORs.

The match-action pipeline consists of multiple pipeline stages,
each of which supports executing multiple match-action tables in

9

Implementing AES Encryption on Programmable Switches via Scrambled Lookup Tables SPIN ’20, August 14, 2020, Virtual Event, NY, USA

a0,0 a1,0 a2,0 a3,0

a0,1 a1,1 a2,1 a3,1

a0,2 a1,2 a2,2 a3,2

a0,3 a1,3 a2,3 a3,3

b0,0 b1,0 b2,0 b3,0

b0,1 b1,1 b2,1 b3,1

b0,2 b1,2 b2,2 b3,2

b0,3 b1,3 b2,3 b3,3

c0,0 c1,0 c2,0 c3,0

c0,1 c1,1 c2,1 c3,1

c0,2 c1,2 c2,2 c3,2

c0,3 c1,3 c2,3 c3,3

k0,0 k1,0 k2,0 k3,0

k0,1 k1,1 k2,1 k3,1

k0,2 k1,2 k2,2 k3,2

k0,3 k1,3 k2,3 k3,3

16-byte round key

In 00 01 02 03 04 05 …

Out 63 7B 77 7B F2 6B …

Substitution box (S-box)

(1) AddRoundKey:
using XOR

(2) SubBytes:
lookup in S-box

(a) The AddRoundKey and SubBytes steps.

c0,0 c1,0 c2,0 c3,0

c0,1 c1,1 c2,1 c3,1

c0,2 c1,2 c2,2 c3,2

c0,3 c1,3 c2,3 c3,3

c0,0 c1,0 c2,0 c3,0

c1,1 c2,1 c3,1 c0,1

c2,2 c3,2 c0,2 c1,2

c3,3 c0,3 c1,3 c2,3

d0,0 d1,0 d2,0 d3,0

d0,1 d1,1 d2,1 d3,1

d0,2 d1,2 d2,2 d3,2

d0,3 d1,3 d2,3 d3,3

(3) ShiftRows: each row cyclically
shifted by 0, 1, 2, or 3 positions

(4)MixColumns: Polynomial Multiplication
under GF(28), modulus (x4+1)
a(x) = 3x3+x2+x+2

b(x) = c1,0x3+c2,1x2+c3,2x+c0,3
d(x) = a(x)⊗b(x) mod (x4+1)

= d1,0x3+d1,1x2+d1,2x+d1,3

(b) The ShiftRows and MixColumns steps.

Figure 1: Illustration of one encryption round in the AES algorithm.

parallel. Multiple pipeline stages enable tables in later stages to
match on the output of tables in earlier stages, so now we can com-
pose more sophisticated functionalities. However, to achieve lower
forwarding latency, practical programmable switches only have a
limited number of hardware pipeline stages, typically 4 ⇠ 32. For
program that is overly complicated, it is possible to “recirculate” the
packet to traverse the pipeline multiple times, in case one pipeline
pass is not su�cient to �nish all operations. The switch operator
allocates a �xed fraction of bandwidth dedicated for recirculating
packets; too many packet recirculations exhaust this bandwidth
and lead to packet drops, thus we want to minimize the number of
recirculations per packet.

We notice that the S-box lookup can be implemented using a
match-action table, by matching on 18, 9 s and writing di�erent val-
ues to 28, 9 s. Meanwhile, the XOR computations are supported on
the programmable switches as well. Yet, naively translating the AES
algorithm may lead to a complex data plane program that exhausts
all pipeline stages, or requires too many recirculations. Therefore,

we need to optimize our algorithm implementation for RMT archi-
tecture to minimize the number of pipeline stages needed.

3 OPTIMIZING AES FOR PROGRAMMABLE
SWITCHES

Although the AES algorithm is modular and uses only simple arith-
metic, a naive implementation may not �t into the limited hard-
ware resources of a RMT programmable switch. In this section,
we present the Scrambled Lookup Table technique for e�ciently
implementing AES encryption on RMT programmable switches.

Long Dependency Chain.We �rst notice that out of the four
steps in the encryption rounds, both AddRoundKey and MixColumns
can be implemented using XORs, and ShiftRows is essentially
renaming variables. Furthermore, an existing AES implementation
using the T-table construction can combine S-box and the e�ect of
variable renaming and polynomial multiplications. Therefore, one
AES encryption round can be simply implemented by four lookup
tables and many XORs.

10

SPIN ’20, August 14, 2020, Virtual Event, NY, USA Xiaoqi Chen

a0,0 a1,0 a2,0 a3,0

a0,1 a1,1 a2,1 a3,1

a0,2 a1,2 a2,2 a3,2

a0,3 a1,3 a2,3 a3,3

c0,0 c1,0 c2,0 c3,0

c0,1 c1,1 c2,1 c3,1

c0,2 c1,2 c2,2 c3,2

c0,3 c1,3 c2,3 c3,3

k0,0 k1,0 k2,0 k3,0

k0,1 k1,1 k2,1 k3,1

k0,2 k1,2 k2,2 k3,2

k0,3 k1,3 k2,3 k3,3

16 tables per round,
one for each ki,j

16-byte round key

Pre-computed Scrambled Lookup Tables
In 00 01 02 03 04 05 …

In XOR k0,0

Out 63 7B 77 7B F2 6B …

In 00 01 02 03 04 05 …

In XOR k1,0

Out 63 7B 77 7B F2 6B …

In 00 01 02 03 04 05 …

In XOR k0,2 71 70 73 72 75 74 …

Out 63 7B 77 7B F2 6B ……

Figure 2: With Scrambled Lookup Tables, one lookup completes both the AddRoundKey and SubBytes steps.

Although RMT programmable switches can perform many arith-
metic operations in parallel in each pipeline stage, the number
of pipeline stages are limited. We want to shorten the number of
arithmetic operations in series, or those creating dependencies one
after the other. Unfortunately, in the traditional lookup table-based
AES implementation, the SubBytes lookup depends on the XOR
result of AddRoundKey, while we need to XOR many lookup re-
sults to obtain this round’s output, before starting next round’s
AddRoundKey. This creates a rather long dependency chain (XOR-
lookup-XOR), which translates to more hardware pipeline stages
needed per encryption round.

Given that existing AES optimizations are geared towards em-
bedded devices, which have a very small memory budget, we try
a di�erent approach. The S-box is only 256 bytes, and even in the
optimized lookup table-based AES implementation storing lookup
tables only costs 4 kilobytes. Programmable switches have abun-
dant memory for match-action table entries, so we would like to
in�ate our implementation’s memory footprint to trade for shorter
data dependency, therefore using fewer hardware pipeline stages.

Use Multiple, Scrambled Lookup Tables. In Figure 2, we il-
lustrate the idea of using Scrambled Lookup Tables to combine the
AddRoundKey and SubBytes steps. Previously, one byte after the
SubBytes step is calculated as:

28, 9 = (1>G [18, 9] = (1>G [08, 9 � :8, 9]
We now scramble the lookup table (Substitution box) for each (8, 9),
yielding this equivalent way of calculating 28, 9 :

28, 9 = (2A0<1;4 ((1>G,:8, 9) [08, 9] .
To achieve this equivalence, we de�ne the table scrambling op-

eration as follows:

(2A0<1;4 ((1>G,:) [0] = (1>G [0 � :],80,:
We notice 5 (0) = 0 � : is a bijection. As the original Sbox lookup
table has 256 entries, indexed from 0 to 255, we can prove that
the scrambled lookup table also has the same 256 entries, for any
scrambling key : between 0 and 255.

By permuting the lookup tables beforehand, we can complete
both the AddRoundKey and SubBytes steps in one lookup, at the

cost of storing 16 di�erent lookup tables in each encryption round,
as each byte now uses a di�erent, scrambled lookup table.

After applying the Scramble Lookup Table technique, we follow
the existing T-table optimization: the subsequent ShiftRows and
MixColumns steps are folded into the lookup table step, by per-
muting the lookup table outputs and calculating multiplications
beforehand. Now we simply need to XOR four di�erent bytes to-
gether using three XORs to obtain 38, 9 , which can immediately be
fed into the Scramble Lookup Tables of the next encryption round.
We also note that the Scramble Lookup Table technique can be sim-
ilarly applied to AES decryption as well, however the encryption
key is instead mixed into the output of lookup tables. In the next
sections, we will show the extra memory required for the Scrambled
Lookup Table technique is acceptable.

4 PROTOTYPE IMPLEMENTATION
In this section, we present our implementation of the AES algorithm
running on a Barefoot To�no Wedge32X programmable switch.

We implement a P4_16 program that takes UDP packets with
128-bit payload as input and emits the encrypted 128-bit ciphertext
in the payload of output packets. In actual security or privacy
applications, the encryption may be used over IP header �elds
(e.g., in ONTAS [7]). The parser of the P4 program merely parses
Ethernet, IP, and UDP headers and subsequently parses the 128-
bit payload into 16 individual bytes. Subsequently, the program
performs two AES rounds in one pipeline pass, then recirculates
the packet for more rounds until the encryption is �nished. For each
round, we use 16 Scrambled Lookup Tables to process each byte,
then use 48 binary XOR operations to accumulate the lookup results.
As the de�nition of these tables are very similar to each other, we
used C-style macros to generate the source code for all these tables.
The vanilla P4 source code is approximately 600 lines, and grows
to approximately 950 lines after the macros are expanded. We have
published the P4 source code and the corresponding control plane
code on GitHub1.

Besides the Scrambled Lookup Tables, the P4 program also uses
a match-action table to decide if a packet should be recirculated,

1https://github.com/Princeton-Cabernet/p4-projects/tree/master/AES-to�no

11

https://github.com/Princeton-Cabernet/p4-projects/tree/master/AES-tofino

Implementing AES Encryption on Programmable Switches via Scrambled Lookup Tables SPIN ’20, August 14, 2020, Virtual Event, NY, USA

based on the current encryption round. We add a temporary 4-byte
header in the packet to maintain context, including the current en-
cryption round and the �nal output port the packet should be routed
to. By default, the Wedge32X switch has two 100Gbps loopback
ports speci�cally reserved for packet recirculation. To maximize
encryption throughput, we randomly choose one of the two ports
for each packet selected for recirculation, by �ipping a random fair
coin using the switch’s random number generator. If more ports
are used for recirculation, we should change the random selection
process accordingly to load-balance between these ports.

A python-based control plane is responsible for deriving the
encryption key into round keys and installing matching rules for
each scrambled lookup table. For example, when installing a new
128-bit encryption key for AES-128, the control plane derives 10
di�erent round-speci�c key blocks; each round uses 16 scrambled
lookup tables with 256 entries, so in total it installs 10 ⇥ 16 ⇥
256=40960 matching rules.

We veri�ed our implementation’s correctness using the test vec-
tors available in the o�cial AES speci�cation [11].

5 EVALUATION
We now evaluate our prototype implementation of AES running
on RMT programmable switches, by investigating its maximum
throughput and hardware resource utilization.

5.1 Throughput
First, we measure the maximum encryption throughput we can
achieve.

Setup:We connect two servers to one Barefoot To�noWedge32X
32-port programmable switch via 100Gbps Direct Attach Copper
(DAC) cable. Each server has one Mellanox ConnectX-5 100G NIC
and 20 CPU cores running at 2.2GHz. We use Pktgen-DPDK on
one server to generate UDP packets with randomized source port
and payload, and use a customized script on the other server to
measure the packet receiving rate. Each UDP packet carries 128
bits (16 bytes) of payload, and has total size 58 bytes.

Recirculation bandwidth: Recall that the Wedge32X switch
has two 100Gbps loopback ports reserved for recirculation, and
the user can con�gure more physical ports to loopback mode to
increase recirculation throughput. In our experiments, we leave
the default con�guration as-is, and measure the maximum encryp-
tion throughput we can achieve given the 2x100Gbps recirculation
bandwidth.

We note that an incoming UDP packet is recirculated for a few
times before leaving the switch to complete all encryption rounds,
hence the switch will likely run out of recirculation bandwidth
when the incoming packet rate is too high, leading to excessive pac-
ket drops. Therefore, we gradually increase the ingress packet rate
and observe the peak egress packet rate, to �nd out the maximum
possible encryption throughput under each setup.

Results: In Figure 3, we show the encryption throughput with
respect to the incoming packet rate, for AES-128 algorithm (10
rounds). Here we present both an optimized version performing two
rounds of encryption per pipeline pass (requiring 4 recirculations /
5 passes), as well as a baseline version performing only one round
per pass (requiring 9 recirculations / 10 passes).

Figure 3: The prototype achieves maximum encryption
throughput at 85 Million packets/second for AES-128, after
which it starts to su�er from packet drops.

As we can see, the optimized prototype achieves the highest
throughput at 85.3 Million packets per second (Mpps). Given that
each 58-byte UDP packet carries a 128-bit encryption payload,
this translates to 10.92Gbit/s (1.36GB/s) of encryption throughput.
Meanwhile, the baseline version only achieves 4.91Gbit/s maximum
throughput at 38.4 Mpps.

We repeat the experiment for AES-192 andAES-256 and observed
similar patterns. In Figure 4, we plot the maximum throughput with
respect to the number of total encryption rounds. As we expect, the
throughput is inversely proportional to the number of recirculations
required. Under the default 2x100Gbps loopback con�guration, we
can encrypt data at 8.76Gbit/s (1.10GB/s) for AES-192 and 7.37Gbit/s
(922MB/s) for AES-256. To put these numbers into context, such
throughput is on par with one modern desktop CPU core with
instruction-set level AES optimization, or around four to six cores
using software-based implementation.

We believe such throughput is su�cient for supporting a va-
riety of in-network security and privacy innovations using pro-
grammable switches, such as IP header encryption and obfuscation;
we anticipate these in-network applications only need to work on
a fraction of bytes out of the entire line-rate tra�c, as in the future
most payload tra�c will be protected by end-to-end encryption.

We further note that a higher encryption bandwidth is possible
by reserving more switch ports as loopback; for example, if we
reserve 50% of the ports, we can increase recirculation bandwidth
by 8x and achieve a 8x increase in encryption throughput.

5.2 Hardware Resource Utilization
Now we analyze the resource footprint of AES encryption on pro-
grammable switches.

Memory: As we discussed earlier, the programmable switches
have large memory for table matching, which is required for net-
work routing. Technically, these exact match rules are stored in
Static Random Access Memory (SRAM).

In our prototype implementation, each Scrambled Lookup Table
stores 256 matching rules, and in total there are at most 16 tables
times 14 rounds, i.e., 57k rules. Each rule costs 6 bytes to store (2
bytes matching + 4 bytes action data), which translates to 344 KB

12

SPIN ’20, August 14, 2020, Virtual Event, NY, USA Xiaoqi Chen

Figure 4: Maximum encryption throughput achieved under
di�erent number of encryption rounds.

for all rules. Even considering memory alignment and table over-
provisioning, the actual memory footprint is still a modest fraction
for today’s switch hardware with tens of megabytes of SRAM.

Memory used for other switch functions (e.g., a couple of match-
ing rules for deciding recirculation) is negligible. In total, we used
less than 15% of the SRAM available on the hardware switch.

Tables: The programmable switch only supports a certain num-
ber of match-action tables. In our prototype, each encryption round
is implemented using 16 Scrambled Lookup Tables, therefore a pac-
ket goes through 32 match-action tables to �nish two rounds of
encryption. The prototype used a couple more tables for various
pre-processing and deciding recirculation. In total, it used less than
25% of the maximum number of match-action tables supported.

Arithmetic Operations: The programmable switch’s packet
processing pipeline supports a large, yet limited, number of instruc-
tions to perform in parallel in each pipeline stage, therefore we
need to limit the number of arithmetic operations performed. In
each encryption round in our prototype, the 16 Scrambled Lookup
Tables output 16 four-byte values grouped into four rows. Within
each row, we use three binary XOR operations to accumulate the 4
four-byte values into one. Therefore, we need 12 XORs in total to
�nish each encryption round, and need 24 XORs across the pipeline
for two rounds of encryption.

Both the number of arithmetic operations used for encryption
and for other miscellaneous processing are minimal, and the proto-
type used less than 10% of the maximum number of instructions
supported.

In summary, our prototype implementation of AES algorithm
did not extensively use any particular hardware resource on the
programmable switch. It should coexist well with other switch func-
tions when running together with other programs, or as a building
block of a more sophisticated data plane program to implement
secure and private network applications.

6 DISCUSSION
EncryptionMode:Our current prototype only encrypts one block
of data at a time. For data longer than 16 bytes, naively encrypting
each block individually is referred to as Electronic Code Book (ECB)
mode, which is unsafe. Safer encryption modes are straightforward
to implement, as they merely require an additional XOR for the data

block with a counter, initialization vector, or an adjacent data block.
These XORs are orthogonal to the block-level AES encryption.
Key Expansion: Currently, the AES key expansion procedure is
completed in the switch control plane, and the key is installed in
the form of tens of thousands of table entries for the Scrambled
Lookup Tables. This process takes a few hundred milliseconds, and
we could add versioning bits to the tables to maintain atomicity. It
is also possible to compute the key expansion directly in the data
plane, if more frequent key updates are desired.
Side-Channel Attacks: Encryption algorithms running on any
hardware are subject to side channel attacks, such as key extrac-
tion through power or timing side channels. As the encryption
key is represented by many table matching rules, an attacker may
recover the key by probing the matching rules. We leave a more de-
tailed hardware side channel analysis for the TCAM table matching
mechanism for future work.
Performance: We note that our current AES implementation is
a feasibility demonstration and not yet optimal for the Barefoot
To�no programmable switch, and it is possible to squeeze in three or
four encryption rounds per pipeline pass. Also, we are only using
the ingress half of the pipeline, while using the egress half can
reduce the number of recirculation passes and potentially double
the throughput.

However, we shall also bear in mind that there is only a limited
room for further performance improvement. The match-action ta-
bles in RMT switches are not optimized for AES, thus can never
achieve comparable throughput or power e�ciency as dedicated
CPU, FPGA, or cryptography co-processor. Alternatively, a pro-
grammable switch may add such dedicated cryptography circuit or
co-processor, and allows P4 programs to use externs to compute
cryptography functions, similar to what proposed in [5].

Aumasson [1] proposed using fewer encryption rounds in AES,
to achieve higher throughput while providing practically acceptable
security guarantee. Meanwhile, compared with AES, encryption
algorithms using the Feistel cipher structure [8] can be implemented
more e�ciently using our Scrambled Lookup Table technique, as
one encryption round (one lookup table and one XOR) can be
�nished within only one hardware pipeline stage. Thus, we also
desire a data plane implementation of another standardized, widely-
used encryption algorithm that uses Feistel cipher structure.

7 CONCLUSION
In this paper, we present the Scrambled Lookup Table technique for
e�ciently implementing AES encryption algorithm on RMT high-
throughput programmable switches. We implement and evaluate a
prorotype P4 program and show it can perform AES-128, AES-192,
and AES-256 encryption at 10.92, 8.76, and 7.37 Gbit/s. This paves
the way for implementing more sophisticated secure and private
network protocols in the data plane of programmable switches.

8 ACKNOWLEDGMENTS
This research is supported by DARPA Contract No. HR001117C0047.
We sincerely thank the anonymous reviewers of SPIN’20, as well as
Jennifer Rexford, Tom Barbette, Hyojoon Kim, Praveen Tammana,
Mary Hogan, Mengying Pan, and Robert MacDavid, for their helpful
comments and feedback.

13

Implementing AES Encryption on Programmable Switches via Scrambled Lookup Tables SPIN ’20, August 14, 2020, Virtual Event, NY, USA

REFERENCES
[1] Jean-Philippe Aumasson. 2020. Too Much Crypto. Real World Crypto Symposium

(RWC 2020) (2020).
[2] Pat Bosshart, GlenGibb, Hun-Seok Kim, George Varghese, NickMcKeown,Martin

Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding metamorpho-
sis: Fast programmable match-action processing in hardware for SDN. In ACM
SIGCOMM Conference.

[3] Joan Daemen and Vincent Rijmen. 1999. AES submission document on Rijndael,
Version 2. https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-
and-guidelines/documents/aes-development/rijndael-ammended.pdf. National
Institute of Standards and Technology, US Department of Commerce (September
1999).

[4] Trisha Datta, Nick Feamster, Jennifer Rexford, and Liang Wang. 2019. SPINE:
Surveillance Protection in the Network Elements. In 9th USENIX Workshop on
Free and Open Communications on the Internet (FOCI 19). USENIX Association,
Santa Clara, CA.

[5] Frederik Hauser, Mark Schmidt, Marco Häberle, and Michael Menth. 2019. P4-
MACsec: Dynamic TopologyMonitoring and Data Layer Protection withMACsec
in P4-SDN. arXiv preprint arXiv:1904.07088 (2019).

[6] Mustafa Khairallah, Anupam Chattopadhyay, and Thomas Peyrin. 2017. Looting
the LUTs: FPGA optimization of AES and AES-like ciphers for authenticated
encryption. In International Conference on Cryptology in India. Springer, 282–301.

[7] Hyojoon Kim and Arpit Gupta. 2019. ONTAS: Flexible and Scalable Online
Network Tra�c Anonymization System. In 2019 Workshop on Network Meets AI
& ML. 15–21.

[8] Lars R Knudsen. 1993. Practically secure Feistel ciphers. In International Workshop
on Fast Software Encryption. Springer, 211–221.

[9] Xinqiang Luo, Yue Qi, Yadong Wan, Qin Wang, and Hong Zhang. 2014. A fast
AES encryption method based on single LUT for industrial wireless network.
In International Conference on Identi�cation, Information and Knowledge in the
Internet of Things. IEEE, 158–161.

[10] Sumio Morioka and Akashi Satoh. 2002. An optimized S-Box circuit architecture
for low power AES design. In International Workshop on Cryptographic Hardware
and Embedded Systems. Springer, 172–186.

[11] National Institute of Standards and Technology. 2009. FIPS 197, Advanced Encryp-
tion Standard (AES). https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf.
National Institute of Standards and Technology, US Department of Commerce (No-
vember 2009).

[12] James Nechvatal, Elaine Barker, Lawrence Bassham, William Burr, Morris
Dworkin, James Foti, and Edward Roback. 2001. Report on the development of
the Advanced Encryption Standard (AES). Journal of Research of the National
Institute of Standards and Technology 106, 3 (2001), 511.

[13] Pedro Reviriego and Daniel Ting. 2020. Security of HyperLogLog (HLL) Cardi-
nality Estimation: Vulnerabilities and Protection. IEEE Communications Letters
(2020).

[14] Je�rey Rott. 2010. Intel Advanced Encryption Standard instructions
(AES-NI). https://software.intel.com/en-us/articles/intel-advanced-encryption-
standard-instructions-aes-ni. Technical Report, Technical Report, Intel (2010).

[15] Johannes Wolkerstorfer, Elisabeth Oswald, and Mario Lamberger. 2002. An
ASIC implementation of the AES SBoxes. In Cryptographers’ Track at the RSA
Conference. Springer, 67–78.

14

https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni

