
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/348091015

Euclid: A Fully In-Network, P4-based Approach for Real-Time DDoS Attack

Detection and Mitigation

Article in IEEE Transactions on Network and Service Management · December 2020

DOI: 10.1109/TNSM.2020.3048265

CITATIONS

0
READS

36

4 authors, including:

Some of the authors of this publication are also working on these related projects:

AltoStratus: Middleware Solutions for Service Composition, Execution and Management in Hybrid and Heterogeneous Clouds View project

Changeledge View project

Alexandre Ilha

Universidade Federal do Rio Grande do Sul

1 PUBLICATION 0 CITATIONS

SEE PROFILE

Jonatas Adilson Marques

Universidade Federal do Rio Grande do Sul

7 PUBLICATIONS 20 CITATIONS

SEE PROFILE

Luciano Paschoal Gaspary

Universidade Federal do Rio Grande do Sul

182 PUBLICATIONS 1,220 CITATIONS

SEE PROFILE

All content following this page was uploaded by Alexandre Ilha on 05 January 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/348091015_Euclid_A_Fully_In-Network_P4-based_Approach_for_Real-Time_DDoS_Attack_Detection_and_Mitigation?enrichId=rgreq-06090007f60038ee84805451fff31469-XXX&enrichSource=Y292ZXJQYWdlOzM0ODA5MTAxNTtBUzo5NzY2NTg1MTc0Nzk0MjVAMTYwOTg2NDk0NDg0NQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/348091015_Euclid_A_Fully_In-Network_P4-based_Approach_for_Real-Time_DDoS_Attack_Detection_and_Mitigation?enrichId=rgreq-06090007f60038ee84805451fff31469-XXX&enrichSource=Y292ZXJQYWdlOzM0ODA5MTAxNTtBUzo5NzY2NTg1MTc0Nzk0MjVAMTYwOTg2NDk0NDg0NQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/AltoStratus-Middleware-Solutions-for-Service-Composition-Execution-and-Management-in-Hybrid-and-Heterogeneous-Clouds?enrichId=rgreq-06090007f60038ee84805451fff31469-XXX&enrichSource=Y292ZXJQYWdlOzM0ODA5MTAxNTtBUzo5NzY2NTg1MTc0Nzk0MjVAMTYwOTg2NDk0NDg0NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Changeledge?enrichId=rgreq-06090007f60038ee84805451fff31469-XXX&enrichSource=Y292ZXJQYWdlOzM0ODA5MTAxNTtBUzo5NzY2NTg1MTc0Nzk0MjVAMTYwOTg2NDk0NDg0NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-06090007f60038ee84805451fff31469-XXX&enrichSource=Y292ZXJQYWdlOzM0ODA5MTAxNTtBUzo5NzY2NTg1MTc0Nzk0MjVAMTYwOTg2NDk0NDg0NQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexandre_Ilha?enrichId=rgreq-06090007f60038ee84805451fff31469-XXX&enrichSource=Y292ZXJQYWdlOzM0ODA5MTAxNTtBUzo5NzY2NTg1MTc0Nzk0MjVAMTYwOTg2NDk0NDg0NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexandre_Ilha?enrichId=rgreq-06090007f60038ee84805451fff31469-XXX&enrichSource=Y292ZXJQYWdlOzM0ODA5MTAxNTtBUzo5NzY2NTg1MTc0Nzk0MjVAMTYwOTg2NDk0NDg0NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade_Federal_do_Rio_Grande_do_Sul?enrichId=rgreq-06090007f60038ee84805451fff31469-XXX&enrichSource=Y292ZXJQYWdlOzM0ODA5MTAxNTtBUzo5NzY2NTg1MTc0Nzk0MjVAMTYwOTg2NDk0NDg0NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexandre_Ilha?enrichId=rgreq-06090007f60038ee84805451fff31469-XXX&enrichSource=Y292ZXJQYWdlOzM0ODA5MTAxNTtBUzo5NzY2NTg1MTc0Nzk0MjVAMTYwOTg2NDk0NDg0NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jonatas-Marques?enrichId=rgreq-06090007f60038ee84805451fff31469-XXX&enrichSource=Y292ZXJQYWdlOzM0ODA5MTAxNTtBUzo5NzY2NTg1MTc0Nzk0MjVAMTYwOTg2NDk0NDg0NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jonatas-Marques?enrichId=rgreq-06090007f60038ee84805451fff31469-XXX&enrichSource=Y292ZXJQYWdlOzM0ODA5MTAxNTtBUzo5NzY2NTg1MTc0Nzk0MjVAMTYwOTg2NDk0NDg0NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade_Federal_do_Rio_Grande_do_Sul?enrichId=rgreq-06090007f60038ee84805451fff31469-XXX&enrichSource=Y292ZXJQYWdlOzM0ODA5MTAxNTtBUzo5NzY2NTg1MTc0Nzk0MjVAMTYwOTg2NDk0NDg0NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jonatas-Marques?enrichId=rgreq-06090007f60038ee84805451fff31469-XXX&enrichSource=Y292ZXJQYWdlOzM0ODA5MTAxNTtBUzo5NzY2NTg1MTc0Nzk0MjVAMTYwOTg2NDk0NDg0NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luciano_Gaspary?enrichId=rgreq-06090007f60038ee84805451fff31469-XXX&enrichSource=Y292ZXJQYWdlOzM0ODA5MTAxNTtBUzo5NzY2NTg1MTc0Nzk0MjVAMTYwOTg2NDk0NDg0NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luciano_Gaspary?enrichId=rgreq-06090007f60038ee84805451fff31469-XXX&enrichSource=Y292ZXJQYWdlOzM0ODA5MTAxNTtBUzo5NzY2NTg1MTc0Nzk0MjVAMTYwOTg2NDk0NDg0NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade_Federal_do_Rio_Grande_do_Sul?enrichId=rgreq-06090007f60038ee84805451fff31469-XXX&enrichSource=Y292ZXJQYWdlOzM0ODA5MTAxNTtBUzo5NzY2NTg1MTc0Nzk0MjVAMTYwOTg2NDk0NDg0NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luciano_Gaspary?enrichId=rgreq-06090007f60038ee84805451fff31469-XXX&enrichSource=Y292ZXJQYWdlOzM0ODA5MTAxNTtBUzo5NzY2NTg1MTc0Nzk0MjVAMTYwOTg2NDk0NDg0NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexandre_Ilha?enrichId=rgreq-06090007f60038ee84805451fff31469-XXX&enrichSource=Y292ZXJQYWdlOzM0ODA5MTAxNTtBUzo5NzY2NTg1MTc0Nzk0MjVAMTYwOTg2NDk0NDg0NQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

1

EUCLID: A Fully In-Network, P4-based Approach
for Real-Time DDoS Attack Detection and

Mitigation
Alexandre da Silveira Ilha, Ângelo Cardoso Lapolli, Jonatas Adilson Marques, and Luciano Paschoal Gaspary

Institute of Informatics, Federal University of Rio Grande do Sul - Brazil
{asilha, aclapolli, jamarques, paschoal}@inf.ufrgs.br

Abstract—Distributed Denial-of-Service (DDoS) attacks have
been steadily escalating in frequency, scale, and disruptiveness—
with outbreaks reaching multiple terabits per second and com-
promising the availability of highly-resilient networked systems.
Existing defenses require frequent interaction between forward-
ing and control planes, making it difficult to reach a satisfactory
trade-off between accuracy (higher is better), resource usage,
and defense response delay (lower is better). Recently, high-
performance programmable data planes have made it possible
to develop a new generation of mechanisms to analyze and
manage traffic at line rate. In this paper, we explore P4
language constructs and primitives to design EUCLID, a fully in-
network fine-grained, low-footprint, and low-delay traffic analysis
mechanism for DDoS attack detection and mitigation. EUCLID
utilizes information-theoretic and statistical analysis to detect
attacks and classify packets as either legitimate or malicious, thus
enabling the enforcement of policies (e.g., discarding, inspection,
or throttling) to prevent attack traffic from disrupting the
operation of its victims. We experimentally evaluate our proposed
mechanism using packet traces from CAIDA. The results indicate
that EUCLID can detect attacks with high accuracy (98.2%)
and low delay (≈250 ms), and correctly identify most of the
attack packets (>96%) without affecting more than 1% of the
legitimate traffic. Furthermore, our approach operates under
a small resource usage footprint (tens of kilobytes of static
random-access memory per 1 Gbps link and a few hundred
ternary content-addressable memory entries), thus enabling its
deployability on high-throughput, high-volume scenarios.

Index Terms—software-defined networks, security, prototype
implementation, testbed experimentation.

I. INTRODUCTION

D ISTRIBUTED Denial-of-Service (DDoS) attacks remain
among the most severe threats to the security of Internet-

connected systems [1]. Increases in both the frequency and the
traffic volume of outbreaks have been causing significant dis-
ruptions of even large-scale online services (e.g., Imperva [2],
[3], GitHub [4], and Dyn [5]). Peak data rates generated
during attack campaigns amount to several terabits per second,
which can saturate high-capacity links. Similarly, maximum
packet rates reaching hundreds of millions of packets per

This article has been accepted for publication in a future issue of IEEE
Transactions on Network and Service Management.

DOI: 10.1109/TNSM.2020.3048265
©2020 IEEE. Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media.
See https://www.ieee.org/publications/rights/index.html.

second (pps) can exhaust resources on forwarding devices and
attacked servers [2], [3]. There is an ongoing trend towards the
worsening of the DDoS phenomenon [6]–[8], which makes it
reasonable to expect even more damaging attacks in the future.

Problem Definition and Motivation. Defensive mecha-
nisms must cater to the needs of present-day high-speed net-
works, whose data rates also reach the order of tens of terabits
per second—especially in Internet Exchange Points (IXPs) and
Service Providers (ISPs). It is a significant challenge for the
mechanisms to defend these networks and their clients against
DDoS attacks while meeting increasingly strict requirements
for accuracy, latency, throughput, cost, and flexibility. Existing
defense mechanisms seek to reach a satisfactory trade-off
between these often-conflicting goals—typically, by relying
on highly-specialized hardware or delegating functions to
software on remote servers. Using specialized hardware, such
as middleboxes based on fixed-function application-specific
integrated circuits (ASICs), has the advantages of delivering
high accuracy, low latency, and high throughput. However,
this approach demands significant capital and operational
expenditures [9], besides potentially leading to vendor lock-in
and requiring forklift upgrades.

Conversely, software-based solutions are more flexible than
custom-built hardware but require continuous interaction and
coordination between servers and forwarding devices. More-
over, analyzing every forwarded packet in software would
lead to unacceptably large overheads on processor time, mem-
ory allocation, and network management traffic. Hence, it is
mandatory to diminish these overheads, which is commonly
achieved by packet sampling (e.g., sFlow [10]) and flow-based
accounting (e.g., NetFlow [11] and OpenFlow [12]). Despite
their benefits, we advocate that these approaches still fall short
in either accuracy or resource usage, depending on analysis
granularity [13]. Moreover, the required coordination between
data and control planes implies a long control loop, which
leads to non-negligible delays in detection and mitigation.

Data plane programmability has emerged as a promising
alternative to deal with the issues mentioned above by en-
abling the in-network execution of novel packet processing
algorithms [9]. This paradigm allows a programmer to express
forwarding logic as code (consisting of elementary primitives
for header manipulation, memory access, and table lookup) to
be delegated to forwarding devices across the network. Data

https://dx.doi.org/10.1109/TNSM.2020.3048265
https://www.ieee.org/publications/rights/index.html

2

plane programmability makes it possible to inspect all packets
of a stream directly at the data plane, thus facilitating low-
latency and high-throughput network defense. Nevertheless,
high-performance programmable data planes offer a restricted
set of instructions, a limited amount of memory (e.g., ≈ tens of
MB of static random-access memory–—SRAM and a few MB
of ternary content-addressable memory—TCAM), and a short
processing time budget (tens of nanoseconds per packet) [14].

Meeting the constraints above is a difficult challenge that
limits the scope of existing defense solutions. For example,
Sonata [15] and Marple [16] use programmable data planes
to adaptively filter packet streams intended for further exam-
ination by the control plane. In both cases, the control plane
coordinates the data plane activities and executes the traffic
analysis logic. As a result, these designs require continuous
coordination between planes, leading to concerns about reac-
tion time, network usage, and scalability. In turn, StateSec [17]
is a data plane-based attack detection mechanism that uses
OpenFlow match+action tables for stateful tracking of po-
tentially harmful traffic patterns. However, its fine-grained
accounting leads to high demands for memory space, limiting
its deployability on high-speed switches.

Proposal. In this paper, we present EUCLID, a full-fledged
solution towards low-latency, fine-grained traffic inspection to
detect and mitigate DDoS outbreaks. This paper inherits and
substantially enhances the basic ideas of a recent conference
paper, building upon its learned lessons and successful results.
In that paper, we introduced DDoSD-P4 [18], an information-
theoretic and probabilistic mechanism that utilizes P4 [19] to
reliably detect the occurrence of volumetric DDoS attacks.
Our mechanism relied on a statistical model based on IP
address Shannon entropy to characterize legitimate traffic and
calculate anomaly detection thresholds. In contrast to existing
solutions that use Shannon entropy, which require a combina-
tion of general-purpose CPUs with SDN/OpenFlow switches,
our mechanism is implementable in programmable forwarding
devices. In addition to the Shannon-based design, this paper
further introduces a framework for reacting to anomaly detec-
tion alarms, integrating the detection and mitigation of attacks
entirely into the data plane.

Two of our work’s main challenges are (i) the adaptations
and simplifications on the entropy estimation side and (ii) the
in-depth exploration of the constructs made available by a P4
programmable data plane. As far as we are aware, our work
is the first to offload this kind of anomaly detection and miti-
gation mechanism to programmable network devices. To meet
their strict time and memory constraints, our proposed solution
approximates frequencies using custom count-sketches [20]
and performs compute-intensive mathematical operations with
the aid of a memory-optimized longest-prefix match (LPM)
table. Our method uses classifier results to apply a security
policy (such as discarding, throttling, or detouring) to prevent
suspicious traffic from disrupting networked services. We
assess our method’s efficacy through an extensive experimental
evaluation, based on a proof-of-concept P4 prototype, to
which we submit realistic workloads. We also compare the
performance of the proposed mechanism with that of well-
established solutions.

Contributions. The main contributions of this work are
fourfold, as described next.

1) We push the limits of data plane programming primitives
and constructs to design an in-switch mechanism to
protect networks against DDoS attacks.

2) In contrast to existing approaches and our previous work,
we design a framework that integrates both detection and
mitigation of attacks in the data plane.

3) We demonstrate, employing a thorough evaluation, the
performance advantages of offloading security solutions
to programmable data planes.

4) We elaborate on challenges and insights that can be
valuable for future research initiatives on innovative data
plane-based security mechanisms.

Organization. This paper is organized as follows: In Sec-
tion II, we discuss related programmable data plane-based
techniques to monitor networks and defend them against
DDoS attacks. In Section III, we lay out the foundations
for DDoS attack detection and mitigation. In Section IV,
we introduce our design and discuss its implementation in a
programmable switch. In Section V, we present our evaluation
methodology and the results we obtained. In Section VI, we
elaborate on the lessons learned during the development of
this work. In Section VII, we conclude the paper with final
remarks and perspectives for future work.

II. RELATED WORK

Distributed denial-of-service (DDoS) attacks and general
strategies to defend networks against them have been ex-
tensively discussed in several highly-cited surveys [21]–[25].
It is a relevant challenge to defend networks against DDoS
outbreaks cost-effectively, i.e., balancing requirements for per-
formance, defense latency, and operational flexibility. One of
the main challenges of defense systems is determining where
to deploy their security functions (such as attack detection,
attack source identification, and attack reaction [22]). At one
extreme, ordinary switches would directly forward all traffic
to off-path middleboxes (e.g., firewalls, intrusion prevention
systems, and servers) for scrubbing (attack detection and fil-
tering). At the other extreme, switches with advanced function-
ality would perform on-path traffic scrubbing by themselves
without depending on middleboxes. In-between the extremes
lie architectures that distribute functionalities on both off-path
mechanisms and forwarding devices.

Middlebox-based Solutions. When defense depends on
middleboxes, these devices must be able to handle the high
volume of traffic that flows through the switches, which leads
to performance concerns. A fine-grained approach, in which
all the traffic would pass through the middlebox, would be
constrained by the processing and storage resources of this
intermediate hop. These resource demands can be reduced
by using monitoring primitives such as packet sampling
(e.g., sFlow [10]) and flow-based aggregate accounting (e.g.,
NetFlow [11] and OpenFlow [12]). However, sampling and
aggregate accounting also diminish defense accuracy [13]. Al-
ternatively, a middlebox based on fixed-function application-
specific integrated circuits (ASICs) can achieve the desired

3

levels of accuracy, latency, and throughput. Nevertheless, this
approach demands significant expenditures as well as leads
to vendor lock-in, perpetuating the so-called network ossifica-
tion [9].

While software-based solutions running on general-purpose
CPUs offer the best possible flexibility, this strategy is not
future-proof. The growth in forwarding and link speeds has
outpaced the increase in CPU performance, which means that
scaling up requires adding extra hardware indefinitely. Numer-
ous research efforts have sought to solve this apparent impasse
by exploring the potential of software-defined networking
(SDN) and programmable data planes (as we innovatively
do in our work) as enablers of a new generation of security
services.

SDN-based Solutions. Several recent investigations [26]–
[28] have surveyed SDN-based DDoS defense mechanisms,
some of which we analyze next. Following the SDN paradigm,
Xu and Liu [29] have proposed an OpenFlow-based mech-
anism to detect DDoS attacks and identify the source and
destination hosts. In the control plane, their solution executes
an unsupervised learning algorithm to classify packet flows
according to their volume and rate asymmetry. The controller
periodically fetches raw measurements from flow tables in
the switches. Considering that the total amount of memory
for these flow tables is constrained to a few thousand ternary
content-addressable memory (TCAM) entries per switch, the
controller dynamically adapts the data aggregation granularity
to optimize memory usage while enabling zooming into ab-
normal traffic patterns. This adaptive process requires multiple
application programming interface (API) invocations, which
results in a non-negligible delay (in the order of several sec-
onds) to detect an ongoing attack and close in on the attacking
sources. Aiming to avoid the multi-second delay in detection
resulting from cross-plane operations, StateSec [17] is a DDoS
attack detection and mitigation mechanism that offloads all
monitoring functions to the data plane. StateSec analyzes flow
features (e.g., source and destination hosts and ports) through
a set of in-switch finite-state machines based on extended
OpenFlow tables [30]. The network controller reads the data
generated by the data plane and uses an entropy anomaly-
based algorithm to detect attacks. However, this approach
requires a flow-table entry for every distinct flow, which
potentially leads to memory saturation. The proposal does not
specify how to calculate entropy within the strict time budgets
(in the order of nanoseconds) of high-throughput switches.
Furthermore, StateSec performs mitigation by installing, on-
demand, new flow rules in the data plane to drop, queue, or
deep-inspect suspect traffic. Consequently, StateSec is subject
to the same delays as the method by Xu and Liu [29].

As the proposals mentioned above exemplify, SDN allows
security systems to evolve. However, there is still a depen-
dency on frequent communication between the control and
data planes to carry out traffic accounting and security function
processing, which results in significant overhead and delays.
Security decisions are taken in the control plane time scale,
requiring hundreds of milliseconds (or even whole seconds).
These delays are undesirable in the context of security, for
which early detection and mitigation are paramount. As op-

posed to these OpenFlow-based approaches, our work can
perform policy enforcement in the time scale of nanoseconds.

Programmable Data Plane-Based Solutions. In contrast
to the OpenFlow-based mechanisms we described above, ap-
proaches such as OpenSketch [31], UnivMon [32], and Elastic
Sketch [33] fully delegate traffic accounting to the data plane.
In these approaches, forwarding devices maintain summarized
traffic counters in sets of hash tables, known as sketches [20],
[34], whose values are periodically collected by the control
plane. Choosing an adequate polling interval is a challenge. On
one extreme, short intervals increase the network management
overhead and the CPU usage in the control plane. On the other,
long intervals increase the delay between the occurrence of the
attack and its detection. Therefore, despite highly accurate,
these solutions are subject to a trade-off between reaction
time and management overhead. Nevertheless, sketches are
a powerful low-footprint tool for calculating statistics on
packet streams. The resource efficiency of sketches is further
explored by SkyShield [35], which compares pairs of sketches
related to pre- and under-attack conditions to infer the identity
of malicious sources. However, SkyShield is a CPU-based
security system; as such, its architecture is not suitable for
high-throughput scenarios.

Aiming to offload even more monitoring logic (as com-
pared to sampling and aggregate statistics) to the data plane,
Sonata [15] provides a language for specifying packet stream
filtering queries. According to operator-defined queries, pro-
grammable switches conditionally forward only the traffic of
interest to external stream processors. The query language
used by Sonata abstracts packet headers as tuples of field
values, which can be used to define filtering and sampling
rules to be executed by the data plane. Based on a similar
concept, Marple [16] is a query language whose statements
are compiled to target programmable forwarding devices. It
also provides a new key-value store construct that enables in-
network execution of functions over aggregations of packets.
Marple also makes these devices able to measure traffic
features; however, analyzing such metrics requires processing
in external servers, which implies additional detection delay.

Other investigations have explored defenses against specific
types of DDoS attacks by implementing prevention techniques
on programmable networks. For instance, the most common
technique involves intercepting session initiation packets in the
data plane and responding to them with challenges to authenti-
cate client hosts (via the three-way handshake) before allowing
them to contact servers inside a network [36], [37]. However,
this technique penalizes the connection time of all clients,
even without an ongoing attack in the network. Seeking to
avoid such delays and thus improve user quality-of-experience,
Tavares and Ferreto [38] proposed requiring authentication
only of clients trying to connect to servers that are under
attack. To pinpoint these servers, the authors implemented
count-sketches to estimate application-layer statistics (e.g.,
the number of half-opened TCP sessions) in programmable
switches. Similarly, Paolucci et al. [39] developed a P4-based
method to detect TCP SYN flood and port-scanning attacks
at edge switches. In their mechanism, upon the detection of
an attack, packets identified as malicious can be dropped or

4

steered for further inspection on an external stateful firewall.
Another example of session-based defense is FrameRTP4 [28],
whose anti-DDoS component uses count-min-sketches [40] to
find heavy-hitter flows and access-control lists to block traffic
related to these flows.

The main limitation of these discussed approaches is that
they are general solutions primarily intended for network
monitoring. While they can help defend against attacks, their
applicability is limited. They operate resembling signature-
based systems, observing specific field values, and detecting
particular types of attacks, such as protocol exhaustion at the
transport or application layers. The sketch-based approaches
diminish monitoring overhead by delegating accounting to data
plane devices, but they still require control plane decisions. In
turn, streaming analytics, such as Sonata and Marple perform,
can go beyond aggregate statistics, but security functions
also depend on external stream processors. To sum up, both
solution classes require frequent interaction between the con-
trol and the data plane, hindering attack detection timeliness.
Unlike the approaches we analyzed above, EUCLID can be
categorized as an anomaly detection system, detecting (and,
very importantly, mitigating) different variations of volumetric
DDoS attacks. Moreover, this process can be entirely executed
in the data plane at the network line rate.

Architectures and Frameworks. We have recently seen
the emergence of research on security architectures and frame-
works that approach in-network defense more abstractly. For
instance, Xing et al. [41] propose FastFlex, an architecture
that implements a “multimode” data plane whose security
mechanisms are enabled only when needed. Under normal
conditions, switches forward data according to regular routing
policies, without incurring additional latency. When under
attack, switches engage their defense mechanisms to mitigate
the threat. Poseidon [27] introduces a high-level language
comprising a set of instructions for network monitoring and
traffic management. Its users can specify defense strategies
and security policies in terms of this language and deploy
the resulting configurations on programmable data planes.
Poseidon also includes a runtime management component that
orchestrates optimal resource allocation in response to attacks
whose characteristics change over time. However, despite im-
plementing case studies for particular attack scenarios, none of
these approaches focus on defense techniques. We emphasize
that generic approaches, such as FastFlex and Poseidon, while
good for flexibility, present similar problems to the ones
that occur with CPU-based solutions. For instance, in the
case of Poseidon, one needs a large amount of memory to
store all the sketches demanded. In contrast, EUCLID memory
requirements are minimal. Similarly to FastFlex, our approach
also enables the mitigation mechanism to be activated only
when needed. However, unlike that approach, EUCLID does
not depend on its defense mechanisms being disabled to avoid
a disproportionate impact on network latency.

Summary. The area of in-network security management is
rapidly growing in importance. The flexibility of software-
defined networking and programmable networks has facili-
tated research within much shorter design and deployment
cycles. The proposals mentioned in this section represent

consistent steps towards devising mechanisms to be executed
in the data plane but are limited in either of two aspects.
Namely, approaches that require external controllers lead to
considerable communication overhead (delaying the detec-
tion of attacks) or use coarse-grained measurements to cope
with the massive amount of data traversing high-speed links
(degrading accuracy). On the other extreme of the design
space, solutions without external controllers focus on prevent-
ing semantic attacks directed to the transport or application
layers of target hosts. Since these approaches rely on state
tracking, their scalability depends on the amount of memory
available. A sufficiently intense attack could deplete resources
in the programmable switch. In contrast, EUCLID, building
upon the anomaly detection strategy proposed in our previous
conference paper [18] (as stressed in the Introduction), goes
a significant step further than preceding work by enabling
scalable detection and mitigation of volumetric DDoS attacks
completely within the data plane. Our design explores data
plane programmability functionality to its full potential and
achieves accuracy, low intrusiveness, and timeliness, as we
describe in the next sections.

III. FOUNDATIONS OF DDOS ATTACK DETECTION AND
MITIGATION

In this section, we revisit our previous work on DDoS attack
detection and provide the groundwork for our proposed in-
network DDoS defense mechanism. We begin by describing
the attack scenario and the threat model we address (Sec-
tion III-A). Next, we present the foundations of our attack
detection strategy (Section III-B). Finally, we explain the un-
derpinnings of the attack mitigation technique (Section III-C).

A. Attack Scenario and Threat Model

The term distributed denial-of-service (DDoS) refers to a
broad class of attack strategies that seek to degrade the quality
or disrupt the availability of services on the Internet [21]. Ser-
vice degradation or disruption occurs when requests overload
the target systems, either by causing network congestion or
saturating computing resources. In this work, we consider a
threat model whose attack vector is a large set of globally-
distributed computers (e.g., a botnet) controlled by an attacker,
sending illegitimate service requests to a single target host
(e.g., a web server). Moreover, the attacker uses spoofing
techniques in an attempt to evade defense measures.

The attack scenario just described makes it challenging
to deploy detection and mitigation mechanisms close to the
attack sources—since the malicious traffic originates in several
different locations, the widespread adoption of source-based
defenses would require collaboration among several Internet
service providers around the globe. Conversely, defenses in-
stalled on the victim’s infrastructure may not be effective
against the aggregated malicious traffic, which may have
already saturated on-path and local network resources. Thus,
we expect our proposed mechanism to be deployed in an
intermediate position within the autonomous systems (ASes)
that are closest to the victim. These transit ASes typically
have high-throughput forwarding devices and a privileged

5

vantage point. Such characteristics facilitate traffic scrubbing
(i.e., attack detection and mitigation) in a timely fashion before
service degradation or disruption occurs. In order to prevent
congestion of lower-capacity links, our mechanism should be
installed on border routers, where it can analyze inter-AS
traffic.

B. Traffic Characterization and Anomaly Detection
Strict performance constraints make it a significant chal-

lenge to engineer hardware for programmable switches at a
reasonable cost. As a result, current programmable data planes
impose strict constraints on time and memory, as well as
make available only a reduced set of instructions [14]. Hence,
defense mechanisms built upon this type of device must be
simultaneously memory-efficient and implementable in terms
of the existing programming primitives. We advocate that
concepts and constructs that have already been successfully
applied in the context of traffic flow analysis can help meet
these goals. This is the case of entropy measurements [17],
[18], [32], [33] (which we discuss in this subsection) and
sketches [31]–[33], [35] (which we discuss in Section IV).

From an information-theoretic standpoint, a DDoS incident
induces anomalies in the Shannon entropy [42] of the IP
address frequency distribution. These anomalies result from
increases in the total number and spread of source addresses
(both legitimate and malicious) and from the concentration
of traffic towards the destination address of the target host—
which leads to a skewed traffic profile [25]. Thus, by ac-
curately distinguishing between normal and abnormal traffic
patterns, it is possible to detect DDoS attacks reliably [43],
[44].

In this work, traffic characterization and anomaly detection
begin with frequency measurements: our mechanism groups
incoming packets in fixed-length observation windows (OWs),
each containing < packets. During each OW, EUCLID counts
the number of occurrences of every distinct source and desti-
nation IP address. Considering - the set of IP addresses within
a total of < packets, and 51, 52, ..., 5# (where # = |- |) the
frequencies of each distinct address, the Shannon entropy of
- , denoted by � (-), is defined by

� (-) = log2 (<) −
1
<

#∑
G=1

5G log2 (5G), (1)

where the summation is the entropy norm of - , defined by

((-) =
#∑
G=1

5G log2 (5G). (2)

As such, Equation 1 can be rewritten as

� (-) = log2 (<) −
1
<
((-), (3)

which highlights the negative relation between the entropy
norm and the entropy itself. The minimum entropy � (-) = 0
occurs when all addresses are the same such that ((-) =

< log2 (<). Dispersed distributions result in higher entropy
values reaching the maximum � (-) = log2 (<) when all
addresses are distinct, i.e., ((-) = 0.

EUCLID calculates entropies separately for the sets of source
and destination IP addresses. During a DDoS attack, it is
expected that the entropy of the set of source IP addresses
increases as malicious packets introduce new values to the
frequency distribution. Conversely, it is expected that the
entropy of the set of destination IP addresses decreases with
the victim becoming more frequent as a destination. On the
one hand, these variations are only observable when the total
number of packets (<) encompasses a sufficiently robust
representation of the address frequency distributions. However,
large values of < lead to higher attack detection delays.
On the other hand, small values of < may render attack-
related changes indistinguishable from short-term fluctuations
of legitimate traffic. Our mechanism seeks to address this
trade-off by scaling the entropy measurements of the source
and the destination IP addresses considering a preset value of
< (the entropy is proportional to log2 (<)).

Anomaly-based attack detection has the advantage of being
able to uncover attacks of unknown behavior and various
intensities, although typically requiring a bootstrapping (or
training) phase. In order to find relevant anomalies, our
mechanism first needs to go through a training phase, during
which it characterizes normal traffic. The training consists
of monitoring the network for a certain number of succes-
sive observation windows (OWs), independently calculating
source and destination IP address entropies for each OW,
and summarizing these values in terms of indices of central
tendency and dispersion. Our mechanism uses exponentially-
weighted moving averages (EWMAs) and mean deviations
(EWMMDs) [45] to summarize measurements. The source and
destination entropy EWMAs are defined by:

"BA2,= = U�BA2,= + (1 − U)"BA2,=−1, (4a)
with "BA2,1 = �BA2,1, and

"3BC,= = U�3BC,= + (1 − U)"3BC,=−1, (4b)
with "3BC,1 = �3BC,1,

where "BA2,= and "3BC,= are the source and destination
entropy EWMAs at the observation window = ∈ N∗. The
factors �BA2,= and �3BC,= are, respectively, the source and
destination address entropies at OW =. The value U ∈ (0, 1) is
the smoothing coefficient—a parameter that allows us to filter
short-term fluctuations while giving prominence to the most
recent entropy measurements. The averages are initialized with
the first entropy measurements.

The source and destination EWMMDs are defined by:

�BA2,= = U |"BA2,= − �BA2,= | + (1 − U)�BA2,=−1, (5a)
with �BA2,1 = 0, and

�3BC,= = U |"3BC,= − �3BC,= | + (1 − U)�3BC,=−1, (5b)
with �3BC,1 = 0,

where �BA2,= and �3BC,= are the source and destination
EWMMDs at the OW =. The factors "BA2,= and "3BC,=,
respectively, are the source and destination EWMAs at OW =.
The value U ∈ (0, 1) is the smoothing coefficient. The mean

6

deviations are initialized with zero.
After having obtained a model of normal traffic under safe

conditions, we use its EWMAs and the EWMMDs to decide
whether an entropy measurement is anomalous, in which case
our mechanism triggers a DDoS attack alarm; otherwise, we
update the traffic model. An entropy anomaly occurs when
any of the following inequalities hold:

�BA2,= > "BA2,=−1 + :�BA2,=−1, (6a)
�3BC,= < "3BC,=−1 − :�3BC,=−1. (6b)

The value k is a configurable parameter called the sensitivity
coefficient, which scales the detection threshold. Since : mul-
tiplies the index of dispersion, its effect is directly proportional
to the variability in traffic patterns. Lower values of k allow the
detection of subtler attacks, at the cost of a lower specificity
(i.e., a higher number of legitimate fluctuations incorrectly
interpreted as attacks). Conversely, higher values of k result in
higher statistical specificity at the cost of letting less-relevant
attacks remain unnoticed. It is the responsibility of the network
administrators to choose k values according to the intended
level of accuracy (i.e., high sensitivity and high specificity).
The experimental results from our previous work [18] indicate
that when k is in the ideal operating range, our mechanism
can accurately (i.e., ≈ 98% sensitivity and ≈ 90% specificity;
see Section V-C) detect and signal the occurrence of DDoS
attacks. Such a high accuracy allows us to use our detection
alarms as trustworthy inputs for a mitigation mechanism—
which we discuss in the following subsection.

C. Inferring Intent from Frequency Variation Anomalies

We use the output of our anomaly detection component as
a trigger to (i) identify which packet sources are the likely
culprits of an attack and (ii) apply a suitable countermeasure.
We design our mechanism following the observation that
Shannon entropy anomalies are likely caused by addresses
whose frequencies have excessively diverged from baseline
measurements [22].

The difference between the frequency variations of legiti-
mate and malicious addresses is significant enough to allow
the accurate classification of packets. By finding an adequate
threshold, we can obtain acceptable results for sensitivity
(i.e., the true-positive rate or proportion of correctly-identified
malicious packets) and specificity (i.e., the true-negative rate
or proportion of correctly-identified legitimate packets).

Since we are interested in comparing safe and unsafe
network conditions, we need to keep track of these. We
consider a network safe when none of its nodes is undergoing
a detectable DDoS attack; otherwise, we consider the network
unsafe. When the anomaly detection module indicates that the
network is unsafe, the mechanism enters a defense readiness
mode, in which it will remain until the network has been
safe for a predetermined cooldown interval—which avoids
premature defense de-escalation.

We model defense readiness as a finite state machine
(FSM) that controls the operation of the attack mitigation
mechanisms. At the end of each observation window, the

mechanism updates the FSM state according to the safety
of the network in ,;0BC (the OW whose accounting has just
finished). Figure 1 illustrates the defense-readiness FSM. It
starts in the SAFE state, in which detection is active, but
mitigation is dormant. Whenever an attack is detected in
,;0BC , the FSM transitions to the DEFENSE ACTIVE, in
which mitigation is active. The FSM remains in the DEFENSE
ACTIVE until no attack is detected in ,;0BC, in which
case there is a transition to DEFENSE COOLDOWN. Once in
cooldown, mitigation remains active; however, if no attack has
been detected for a predetermined number of OWs (not shown
in the figure), the machine transitions to SAFE.

Attack
in WlastSAFE

(Start)

DEFENSE
COOLDOWN

No Attack
in Wlast

DEFENSE
ACTIVE

No Attack
in Wlast

Attack
in Wlast

No Attack
in Wlast

Figure 1. Defense-Readiness State Machine.

Once in any of the DEFENSE states, the defense pipeline
calculates the frequency variation for each incoming packet.
The frequency variation is denoted by + and defined by

+ = +3BC −+BA2 , (7)

where +BA2 and +3BC measure the changes in frequencies of
the source (BA2) and destination (3BC) addresses of the packet.
During an attack, we expect relevant changes in +BA2 and +3BC .
The intuition behind this is that variations related to legitimate
traffic will be proportional for both source and destination
addresses. However, for the malicious traffic, this pattern
changes: while the total traffic grows, the frequencies of the
legitimate source addresses will vary disproportionately to the
frequencies of the malicious addresses. Relative frequencies
for source hosts tend to decrease (many hosts). Relative
frequencies for attack targets tend to increase. By subtracting
+BA2 from +3BC , we expect to obtain larger values of + for
malicious packets than for legitimate ones. We calculate the
variations between the last observation window (,;0BC) and
the observation window used as a baseline of a safe network
condition (,B0 5 4). The values of the +-terms are given by

+BA2 = 5BA2,;0BC − 5BA2,B0 5 4 and (8a)
+3BC = 53BC,;0BC − 53BC,B0 5 4, (8b)

where 5BA2,;0BC and 5BA2,B0 5 4 are the frequencies of BA2

in ,;0BC and ,B0 5 4, respectively. Similarly, 53BC,;0BC and
53BC,B0 5 4 refer to the destination address.

7

After calculating the frequency variation, classification oc-
curs according to a mitigation threshold C and annotates (by
setting metadata) each packet as legitimate or suspect:

+ ≤ C ⇒ packet is legitimate; (9a)
+ > C ⇒ packet is suspect. (9b)

Once packets have been annotated, the mechanism is ready
to enforce an operator-configurable security policy, such as
discarding, throttling, or detouring. Discarding is straightfor-
ward: we immediately drop the suspect packet. Throttling
consists of forwarding suspect packets to a different egress
queue, with a limited number of entries and a predefined dis-
patch rate, thus limiting the volume of suspect traffic allowed
to reach their target. Detouring enables various scenarios:
packets forwarded to a different path can undergo, for instance,
stateful, light, or deep inspection.

In the next section, we present the design and implemen-
tation of the packet processing pipeline that materializes the
defense strategy we have described.

IV. OUR DESIGN FOR IN-NETWORK DDOS ATTACK
DETECTION AND MITIGATION

In this section, we discuss the design and implementation
of the EUCLID packet processing pipeline, which conforms to
the foundations presented in Section III.

We implement EUCLID in P416 [19]. By using this lan-
guage to specify our mechanism, we facilitate its deployment
on compatible P4-programmable switches suitable for high-
speed, high-throughput packet forwarding. Notwithstanding
the versatility of the language, P4 programs must operate
under strict constraints, such as a reduced set of instructions
and a limited amount of memory—in the order of megabytes
of static random-access memory (SRAM) and kilobytes of
ternary content-addressable memory (TCAM). Consequently,
to perform real-time anti-DDoS defense, we need to satisfy
these architectural constraints. Hence, we designed EUCLID
with resource-efficiency in mind: its operation requires, for
each 1-Gbps link, less than 80 KB of SRAM and 2 KB
of TCAM. We discuss the requirements for scaling up our
mechanism to meet the needs of faster links in Section V-C2.

We present an overview of EUCLID in Figure 2. The top
row portrays the attack detection components proposed in the
context of our previous work [18]. Throughout its operation,
our mechanism partitions the stream of incoming packets into
fixed-size observation windows (OWs). During the processing
of each OW, the frequency approximation component tallies
the frequency (number of occurrences) of every source and
destination IP address (§ IV-A1). Next, these frequencies are
used as inputs by the entropy estimation logic (§ IV-A2). At
the end of the OW, the traffic characterization component
uses the entropy estimates to build and update a statistical
model of normal traffic conditions (§ IV-A3). Then, the
anomaly detection stage employs the traffic model to check
for abnormal changes in IP address entropies, in which case
it issues attack alarms (§ IV-A4).

Also, in Figure 2, the bottom row lays out the attack
mitigation components we presently introduce. Attack alarms
trigger transitions in a defense-readiness state machine, which
activates and coordinates the operation of the remaining com-
ponents (§ IV-B1). When attack mitigation is enabled, every
packet undergoes three stages. First, EUCLID analyzes the
address accounting history to measure the frequency variation
of the IP addresses (§ IV-B2). Next, the packet classification
section decides whether there have been unwarranted changes
in frequency, in which case it labels packets as suspects
(§ IV-B3). Last, policy enforcement applies network-operator-
defined rules to determine the adequate destination for the
packet (§ IV-B4). In the remainder of this section, we detail
the implementation of each attack detection and mitigation
component.

A. Collecting Traffic Statistics

Our anomaly-based attack detection strategy depends on
traffic characterization, which requires measuring the Shannon
entropies of the sets of source and destination IP addresses in
each OW (Section III-B). The entropies, in turn, depend on
statistics about the frequency of every source and destination
IP address. Keeping this kind of accounting is potentially
computing- and storage-intensive, especially when exact mea-
surements are required. To make it feasible to obtain these
quantities under the processing constraints of a programmable
data plane, EUCLID builds these statistics through the fre-
quency approximation and entropy estimation pipeline, which
we detail next. Figure 3 illustrates the entire pipeline.

1) Frequency Approximation: We approximate address fre-
quencies by employing count-sketches [20], which we briefly
discussed in Section II. Count-sketches are data structures that
provide a compressed representation of frequency tables of
events in data streams. In our design, the arrival of a packet
in the switch corresponds to two separate events: one for
the source and one for the destination IP address. Moreover,
the data stream consists of all the events within a given
OW. The total size needed for a count-sketch to represent
events without compression grows sublinearly in < [40].
Nonetheless, sketches provide unbiased frequency estimates
within parameterizable probability and tolerances.

Formally, a count-sketch is an abstract data type represented
by a tuple (�, -, �ℎ , �6) and two operations, UPDATE and
ESTIMATE, defined as follows. Let - be the set of all possible
IP addresses and � be a two-dimensional matrix of counters
with depth 3 and width F (i.e., � ∈ Z3×F), where �8, 9 denotes
the counter at row 8 and column 9 (see Figure 3). We define
two sets of independent hash functions �ℎ = {ℎ1, ..., ℎ3} and
�6 = {61, ..., 63}, where each ordered pair (ℎ8 , 68) ∈ �ℎ×�6 is
associated with a matrix row 8 ∈ {1, ..., 3}. All hash functions
take an IP address G ∈ - as a parameter. Hash function ℎ8
maps addresses to column numbers in row 8 (i.e., ℎ8 : - ↦→
{1, ..., F}). Hash function 68 determines whether the counter
�8,ℎ8 (G) should be incremented or decremented (i.e., 68 : - ↦→
{−1, 1}).

8

Traffic
Charact.

Entropy
Estimation

Defense
Readiness

Packet
Classification

Anomaly
Detection

Policy
Enforcement

Frequency
Approx.

Freq. Var.
Analysis

Observation Window
(m packets)

Legitimate Packets

Suspect Packets

ControlIP PacketLegend:

Figure 2. Anti-DDoS Attack Mechanism Top-Level Scheme

The count-sketch operations are summarized as follows:

UPDATE(�, G):
for 8 = 1, ..., 3 :

�8,ℎ8 (G) ← �8,ℎ8 (G) + 68 (G)
ESTIMATE(�, G):

return <4380=(61 (G)�1,ℎ1 (G) , ..., 63 (G)�3,ℎ3 (G))

UPDATE(�, G) counts an occurrence of G by updating ex-
actly one entry in each of the 3 depth levels of the sketch �.
ESTIMATE(�, G) returns an estimate of the frequency count
of G, which we denote as 5̂G (see Figure 3).

The count-sketch uses the hash functions 68 to treat ℎ8
collisions for multiple distinct IP addresses. Expectedly, when
collisions occur, some addresses will increase the counter, and
others will decrease it, which would result in inconsistent es-
timates. However, when considering all 3 counters for a given
IP address, counters whose values are affected by collisions
become outliers. By calculating the median (which eliminates
outliers) of the values stored in all rows, the count-sketch
avoids generating biased frequency estimates. It is essential
to notice that we need to implement a median operator whose
number of inputs is equal to the sketch depth. Consequently, 3
directly influences the complexity of the median calculation,
which requires O(32) execution steps in order to compare all
inputs. In P4, we specify the count-sketch matrices as registers,
which allow the stateful storage of general-purpose data. We
implement the IP address hashing operations as custom hash
functions. In our design, hash functions are homomorphic
to ℎ(G) = (08G + 18) mod ?, where 08 and 18 are co-prime
coefficients, and ? is a prime number. This class of functions
is suitable for deployment in programmable data planes, as
previous work demonstrates [46].

Our design requires calculating independent frequency ap-
proximations for each OW, which mandates resetting all count-
sketches before the first usage within a window. To avoid
bursty processing overheads, we resort to extended count-
sketches. In our implementation, we associate an additional
register to each sketch entry (see Figure 3), where we store
the index of the OW in which it was last updated (,��).
This index, in turn, comes from a P4 stateful counter. Thus,
whenever our mechanism reads an extended count-sketch,
outdated entries are presumed zero and updated accordingly.

Once EUCLID has processed an incoming packet and up-
dated its frequency approximation, it can proceed to the

entropy estimation step.
2) Entropy Estimation: Considering P4 has no support for

floating-point arithmetic, EUCLID stores and handles mea-
surements in a fixed-point format, which allows obtaining
fractional precision using only integer operations. Given that
P4 also lacks instructions to calculate binary logarithms, we
simplify the calculation of Equation 1. For the first term, we
set the observation window size < to a fixed (parameteriz-
able) value so that log2 (<) becomes a constant. As a result,
the real-time entropy estimation processing requires only the
calculation of the second term, i.e., the entropy norm, as we
explain next.

a) Entropy norm estimation: The second term of Equa-
tion 1 is given by ((-) = ∑#

G=1 5G log2 (5G). This term is a
function of the frequencies of each distinct IP address observed
in the window (recall that the calculations are independently
done for source and destination IPs). After the pipeline reads
an IP address and updates its approximate frequency 5̂G , it is
ready to compute the corresponding term in the entropy norm
estimate (̂ (to simplify notation, we omit the parameter -).
As each IP address is expected to occur numerous times in
each OW, the pipeline updates (̂ by adding to it the difference
between the newly-computed term and its previous value. This
is done for 5̂G > 1, as follows:

(̂ ← (̂ + 5̂G log2 (5̂G)︸ ︷︷ ︸
newly-computed term

− (5̂G − 1) log2 (5̂G − 1)︸ ︷︷ ︸
previous term value

. (10)

To calculate Equation 10, we define a pre-computed func-
tion (PCF), which we implement as a longest prefix match
(LPM) lookup table. Our LPM table contains values for
5̂G log2 (5̂G)−(5̂G−1) log2 (5̂G−1). Unlike an exact lookup table,
which would require an entry for each domain value, the LPM
maps variable-length intervals of domain values to a single
entry. As an LPM is typically implemented in a switch by
a ternary content-addressable memory (TCAM), we eliminate
the need for real-time multi-step operations, replacing them
with a single-step TCAM lookup.

We plot our pre-computed function in Figure 4. The
dashed lines represent the aggregation of the domain interval
[147 456, 155 647] to a single entry whose image is H =

18.65214. In this case, the maximum approximation error is
≈ 0.04 when 5G = 147 456. In general, the magnitude of the er-
ror is directly proportional to 3H/3 5G, i.e., log2 (5G)−log2 (5G−1),

9

1 w

1

2

d

M
e
d
i
a
n

2

C1,1 WID
g1(x)C1,h1(x)

gd(x)Cd,hd(x)

C2,1 WID

Cd,1 WID

C1,2 WID

C2,2 WID

Cd,2 WID

C1,w WID

C2,w WID

Cd,w WID

g2(x)C2,h2(x)

Extended Count SketchIP Address Hashing
hi: X ⭢ {1, ..., w}
gi: X ⭢ {-1, 1}

Observation Window
Counter

fx
^

+
+S^ H^

LPM Lookup Table
fx log2(fx) -

(fx - 1) log2(fx - 1)
^ ^

^ ^
log2(m) -

(S ≫ log2(m)) ^

Figure 3. Entropy Estimation Pipeline

Figure 4. LPM lookup table pre-computed function: the dashed lines illustrate
how 5G values can be aggregated to a single table entry with reduced
approximation error.

whose value decreases as 5G grows. Consequently, aggregation
intervals can be larger for higher frequencies. In our reference
implementation1, we propose an algorithm to populate the
LPM while meeting an adequate trade-off between entry count
and maximum error.

Throughout the operation of our P4-based design, ev-
ery incoming packet G triggers UPDATE(�, G) and 5̂G ←
ESTIMATE(�, G) (for source and destination IPs). Our mech-
anism uses 5̂G as a key to look up the increments to the
entropy norms. When our mechanism reaches the end of each
observation window, it uses (̂ to estimate the entropy �̂ (for
conciseness, we omit the parameter -), as shown below.

b) Entropy measurement: Seeking to further diminish the
processing requirements, we constrain the operation window
size < to a fixed power of two. Thus, log2 (<) yields an
integer constant, which makes it possible to calculate (̂/< as
an arithmetic shift. The resulting expression for the entropy
estimate is:

�̂ ← log2 < − ((̂ � log2 <), (11)

where � denotes an arithmetic shift. We store the value
log2 (<) in a register to allow the parameterization of < at
runtime.

In a recently-published work, Ding et al. [47] have in-
troduced algorithms to calculate logarithmic functions and
entropy estimates in programmable data planes. Differently
from our work, their approach does not require a TCAM-
backed pre-computed function (PCF). The solution requires
additional processing steps for each packet—which potentially
implies the allocation of more pipeline stages. The analysis of
the suitability of this solution as a substitute for our PCF-
based approach (regarding the processor time and memory
space trade-off) exceeds the scope of our current work.

After the entropy estimation phase finishes, the switch
begins processing the next functional components—traffic
characterization and anomaly detection.

1Available at https://www.github.com/aclapolli/ddosd-cpp.

3) Traffic Characterization: We summarize entropy mea-
surements in terms of their EWMAs and EWMMDs (Sec-
tion III-B, Equations 4a, 4b, 5a, and 5b). As in the case of en-
tropy estimation, we use fixed-point notation. We choose dif-
ferent representations to allow for sufficient numeric precision.
For instance, whereas we represent entropy measurements as
28 integer and 4 fractional bits, we store moving averages
and deviations as 14 integer and 18 fractional bits. For the
smoothing coefficient U, eight fractional bits are sufficient. In
order to preserve precision, we take special care to specify
operation order and binary radix point alignment.

4) Attack Detection: As in the traffic characterization com-
ponent, attack detection uses fixed-point arithmetic to calculate
source and destination thresholds. The sensitivity coefficient :
is represented with five integer and three fractional bits. We
check whether the last entropy measurements exceed these
thresholds according to Equations 6a and 6b. If, and only if,
both entropy estimates fall within the dynamically-calculated
thresholds, we update the traffic model. Conversely, if an
anomaly is detected, the switch records such occurrence by
setting a packet metadata field. This enables the generation of
a signaling packet and triggers a state transition in the defense-
readiness FSM, which we discuss next.

B. Attack Mitigation

The attack mitigation mechanism, formalized together with
its detection counterpart in Algorithm 1, follows the princi-
ples we discussed in Section III-C. The anomaly detection
component triggers state transitions in the defense-readiness
finite-state machine (FSM). The FSM, in turn, directs the
operation of all the attack mitigation logic. Next, we discuss
the implementation of the state machine and the remaining
security stages.

1) Defense Readiness: In this stage, executed once for each
observation window (OW), EUCLID checks the attack alarm
and the defense-readiness (DR) state to perform a conditional
transition (Algorithm 1, Lines 29-34). If the attack alarm
metadata field is set, the state machine transitions to DEFENSE
ACTIVE, as explained in Section III-C. In contrast, if the at-
tack alarm flag is inactive, there are two possibilities: (i) when
in DEFENSE ACTIVE, DR moves to DEFENSE COOLDOWN,
in which it remains for an additional predetermined number
of observation windows (in our implementation, we set this
number to one); (ii) when already in DEFENSE COOLDOWN,
DR transitions back to SAFE. After DR executes, its resulting
state lasts at least until the end of the next OW, when
new checks and possibly new transitions will occur. In both
DEFENSE states, EUCLID submits every incoming packet to
the subsequent stages—frequency variation analysis, packet
classification, and policy enforcement, which we discuss next.

https://www.github.com/aclapolli/ddosd-cpp

10

Algorithm 1 Attack Detection and Mitigation
Input: % ⊲ Packet headers and metadata

A.1) Frequency Approximation.
1: for 8 ∈ [1, 2, ..., 3] do
2: ℎBA2 (8) ← ℎ8 (%.BA2)
3: 6BA2 (8) ← 68 (%.BA2)
4: if �BA2 (8, ℎBA2 (8)).,�� ≠ ,= then
5: if ,= > 1 and �'BC0C4 = SAFE then
6: �BA2,B0 5 4 (8, ℎBA2 (8)) ← �BA2,;0BC (8, ℎBA2 (8))
7: �BA2,;0BC (8, ℎBA2 (8)) ← �BA2 (8, ℎBA2 (8))
8: �BA2 (8, ℎBA2 (8)) ← 0
9: �BA2 (8, ℎBA2 (8)).,�� ← ,=

10: �BA2 (8, ℎBA2 (8))+ = 6BA2 (8)
11: 5BA2 ← <4380=({6BA2 (8)�BA2 (8, ℎBA2 (8)) |∀8 ∈ [1, 2, ..., 3]})
12: (BA2 ← (BA2 + PCF(5BA2)

The same procedure presented in Lines 1-12 is similarly carried
out for the destination address. Omitted for space.

13: %� ← %� + 1
14: if %� = (2log2 (<)) then
15: ,= ← ,= + 1

A.2) Entropy Estimation.
16: �BA2 ← log2 (<) − ((BA2 >> log2 (<))
17: �3BC ← log2 (<) − ((3BC >> log2 (<))

A.3) Traffic Characterization and
A.4) Anomaly Detection.

18: if ,= = 1 then
19: "BA2 ← �BA2 ; "3BC ← �3BC
20: �BA2 ← 1; �3BC ← 1
21: else
22: �← (�BA2 > ("BA2 + :�BA2) or �3BC < ("3BC − :�3BC))
23: if � is False then
24: "BA2 ← U�BA2 + (1 − U)"BA2
25: "3BC ← U�3BC + (1 − U)"3BC
26: �BA2 ← U |�BA2 − "BA2 | + (1 − U)�BA2
27: �3BC ← U |�3BC − "3BC | + (1 − U)�3BC
28: %= ← 0; (BA2 ← 0; (3BC ← 0

B.1) Defense-Readiness.
29: if A is True then
30: �'BC0C4 ← ACTIVE
31: else if �'BC0C4 = ACTIVE then
32: �'BC0C4 ← COOLDOWN
33: else if �'BC0C4 = COOLDOWN then
34: �'BC0C4 ← SAFE

B.2) Frequency Variation Analysis and
B.3) Packet Classification.

35: %.<4C030C0.2;0BB8 5 820C8>=← LEGITIMATE
36: if �'BC0C4 ≠ SAFE then
37: 5BA2,;0BC ← ESTIMATE(�BA2,;0BC , %.BA2)
38: 5BA2,B0 5 4 ← ESTIMATE(�BA2,B0 5 4, %.BA2)
39: 53BC,;0BC ← ESTIMATE(�3BC,;0BC , %.3BC)
40: 53BC,B0 5 4 ← ESTIMATE(�3BC,B0 5 4, %.3BC)
41: +BA2 ← 5BA2,;0BC − 5BA2,B0 5 4
42: +3BC ← 53BC,;0BC − 53BC,B0 5 4
43: + ← +3BC −+BA2
44: if + > C then
45: %.<4C030C0.2;0BB8 5 820C8>=← MALICIOUS

B.4) Policy Enforcement.
46: if %.<4C030C0.2;0BB8 5 820C8>= is LEGITIMATE then

Apply the normal forwarding table.
47: else

Apply the mitigation forwarding table.
Output: %

2) Frequency Variation Analysis: In this component, we
follow the observation that entropy anomalies are more likely
due to excessive occurrences of the IP addresses of the
attackers, whose frequencies have varied the most between a
reference, baseline OW, and the OW in which we detected
an attack (§ IV-B2). By uncovering these highly-divergent
addresses, we can identify the attack sources. Hence, we
change the source identification problem to a matter of find-
ing excessive variations. EUCLID already performs frequency
approximation to calculate entropies. We extend that principle
to accurately pinpoint sources of malicious traffic.

Similarly to the frequency approximation stage, this step
also uses count-sketches to obtain approximate quantities.
However, in this component, we process historical data, i.e.,
counts obtained in ,;0BC and ,B0 5 4 (respectively, the previous
observation window and the last OW during which the network
was safe, as defined in Section III-C). We store this data in
four additional count-sketches: two for source addresses, two
for destination addresses, i.e., �BA2,;0BC , �3BC,;0BC , �BA2,B0 5 4,
and �3BC,B0 5 4. We further extend the count-sketch by adding
to it the COPY operation:

COPY(�)0A64C, �$A868=, G):
for 8 = 1, ..., 3 :

�)0A64C8,ℎ8 (G) ← �$A868=8,ℎ8 (G)

COPY(�)0A64C, �$A868=, G) iterates on all depth levels of
the target and origin sketches to copy the counters associated
with a given IP address G (Algorithm 1, Lines 6-7).

EUCLID uses count-sketches for this purpose instead
of alternatives such as count-min-sketches (CMS), which
would suffice for frequency variation analysis and could be
faster [48]. The reason for our choice is twofold. First,
EUCLID’s entropy estimation component requires unbiased
frequency estimates for accurate detection, which the CMS
does not provide. Second, at this point in execution, EUCLID
has already calculated the values of the sixteen hash functions
needed for the main count-sketches (which we store in arrays
as exemplified in Lines 2-3) and can simply re-use these values
to copy data to the historical count-sketches. Using another
type of sketch would require computing sixteen additional
hash functions for each packet, increasing the computing
resources footprint.

Right before executing the frequency approximation steps,
we follow a procedure to ensure the updating of the counters
related (i) to the current OW (stored in �BA2 and �3BC); (ii)
to the last OW (stored in �BA2,;0BC and �3BC,;0BC); (iii) and to
the baseline OW (stored in �BA2,B0 5 4 and �3BC,B0 5 4). Since
the counters from ,;0BC and ,B0 5 4 do not change more than
once per OW, we only perform the corresponding operations at
the first occurrence of GBA2 (resp., G3BC) in ,2DAA . Moreover,
to avoid having to allocate memory for temporary data, we
perform the operations in the order specified in Lines 5-7 of
Algorithm 1. Furthermore, we only update the counters from
,B0 5 4 if the DR state is SAFE (Line 5). Back at the frequency
variation analysis component, we perform the calculations
based in Equations 7, 8a, and 8b (Section III-C), as indicated
in Lines 37-43. At this point, EUCLID is ready to proceed to
the packet classification component.

11

3) Packet Classification: For every packet that goes through
the data plane when the defense state is ACTIVE or
COOLDOWN, EUCLID calculates the frequency variation +̂ . As
discussed in Section III-C, we expect that legitimate packets
have smaller +̂ values than the malicious packets have. By
applying a mitigation threshold (C), our mechanism attempts
to identify packets as legitimate or malicious. We seek optimal
results both for the true-positive rate (TPR, the proportion of
malicious packets correctly identified) and the false-positive
rate (FPR, the proportion of legitimate packets mistaken as
malicious). An ideal TPR is close to 100% so that our
mechanism can correctly submit most malicious packets to
the countermeasures they require. In contrast, the FPR must
be close to zero percent, so that legitimate traffic does not
suffer undue disruption.

The mitigation threshold C is parameterizable by the network
operator. We envision the dynamic adjustment of this threshold
as future work. Once defined, C is used in a test: if +̂ > C,
our mechanism sets a metadata field to flag the packet as
suspect (§§ III-C, Equation 9b) (Lines 44-45). Thus, it sets
up the packet to be processed by the next component—policy
enforcement. Otherwise, i.e., if +̂ ≤ C, the switch proceeds to
perform its ordinary forwarding functions.

4) Policy Enforcement: The last stage of our security
pipeline is policy enforcement (Lines 46-47). At this point, we
apply a match-action table to determine how further processing
of the packet must occur. Our design allows the network
operator to choose between three policies to be applied to
suspect packets: discard, throttle, and divert. The
discard policy is implemented by directly calling the P4
drop primitive. The throttle policy sends the packet to a
rate-limited egress queue (although more elaborate implemen-
tations are viable). The divert policy changes the egress
interface so that the packet can be processed off the main
path by different devices (e.g., a deep packet inspector). The
network operator selects policies by populating a match-action
table with applicable rules.

V. EVALUATION

To the best of our knowledge, EUCLID is the first work to
explore data plane programmability, more specifically P4, to
devise a sophisticated DDoS attack detection and mitigation
mechanism. Due to the constraints related to the reduced set
of P416 programming primitives, implementing our design
requires numeric approximations and compact data repre-
sentations (i.e., sketches). Hence, it is imperative to assess
the accuracy, resource utilization, and responsiveness of our
proposed mechanism thoroughly. In this section, we seek
answers to the following research questions (RQs):
• RQ1: How accurate is the entropy estimation pipeline as

a function of memory space requirements?
• RQ2: Assuming reliable entropy estimates (RQ1), how ac-

curate is our detection mechanism under different settings
and attack intensities?

• RQ3: How accurate and responsive is our detection
mechanism as compared to other monitoring strategies?

• RQ4: Assuming reliable detection (RQ2), how effective is
our attack mitigation mechanism under different settings?

Collectively, these questions prompt us to investigate to
what extent and under which conditions it is possible to rely
on a fully in-network approach to obtain protection against
DDoS attacks.

In the next subsection, we detail our evaluation methodology
and experimental setup. Right after, we discuss the results that
support us in answering the research questions above. Finally,
we elaborate on how our findings relate to our mechanism’s
applicability to various attack scenarios.

A. Evaluation Methodology and Experimental Setup

This section describes the topology, testbed, and traffic
generation methods and also details our experimental design.

Topology and Target Devices. Recall from Section III-A
that we expect our proposed mechanism to be deployed in an
intermediate position within the autonomous systems (ASes)
that are closest to the victim. Also, to prevent congestion of
lower-capacity links, our mechanism should be installed on
border routers (in each traffic ingress point), where it can
analyze inter-AS traffic. Given these scenarios, without loss
of generality, we use a single forwarding device (assuming
traffic enters the network through one point only, which is the
case of numerous setups). The single switch represents the
point at which we deploy EUCLID.

We designed our solution for deployment on an RMT-based
[14] hardware device (e.g., a Barefoot Tofino switch [49]).
However, due to the relatively recent introduction of the
P4 language and the small number of P4-programmable
switch suppliers, this hardware has yet to become an off-
the-shelf commodity. Despite this, software solutions facilitate
the progress of the research on programmable networks. In
this work, we conduct our experiments on a software-based
P416 testbed [50]. This setup does not affect our evaluation
since both the accuracy and resource utilization are target-
independent (i.e., hardware and software targets are function-
ally equivalent). Furthermore, by design, a hardware RMT-
based pipeline forwards packets at line-rate and within a fixed
delay between ingress and egress (if there is no recirculation)
[51]. Since EUCLID does not use recirculation, timing is,
therefore, not of concern.

The EUCLID source code is available at our Github reposi-
tory2 and can be used as a starting point for new developments
in the area. Our repository also includes the data analysis
notebooks, scripts, and tools we used for this work.

Datasets and Traffic Generation Strategy. We perform
a packet trace-driven evaluation using representative datasets
of legitimate and malicious traffic. As legitimate traffic, we
use the CAIDA Anonymized Internet Traces 2016 [52] dataset,
recorded from high-speed Internet backbone links. As attack
traffic, we use the CAIDA DDoS Attack 2007 [53] dataset,
which consists of an attempt to deplete the computing re-
sources of a target server and to saturate its connection to the
Internet. Despite not recent, the DDoS dataset is renowned
for its thoroughness and applicability to assess system per-
formance under attack, as several high-impact publications on
network security have attested. The volumetric DDoS attack

2Available at https://www.github.com/asilha/euclid

https://www.github.com/asilha/euclid

12

captured in the dataset matches the attack scenario described
in Section III-A.

We use our traffic generator TRAFG3 to combine the
aforementioned datasets, forming synthetic workloads. Each
workload follows a common structure: a training phase and
a detection and mitigation phase. We set the length of de-
tection and mitigation phase = to 227 packets and that of
the training phase to =/2 packets. During the training phase,
EUCLID analyzes only legitimate traffic in order to initial-
ize the characterization model. The detection and mitigation
phase is subdivided into three segments: pre-attack, with =/4
legitimate packets, attack, with =/2 packets (both legitimate
and malicious), and post-attack, with =/4 legitimate packets.
The attack segment combines ?=/2 malicious packets and
(1 − ?)=/2 legitimate packets, randomly selected according
to a Bernoulli distribution with probability ?. By varying ?

(e.g., 3%, 3.5%, ..., 6%, 20%), we represent different attack
intensities (i.e., the proportion of malicious packets to the total
number of packets during the attack). The TRAFG generator
takes as inputs the datasets and the parameters = and ?,
and it outputs a packet trace file that follows the structure
we described. Once we have the workloads, each experiment
consists of submitting the packets into a switch interface.

Experimental Design. Table I shows the system factor
levels we use throughout the evaluation. To evaluate esti-
mation accuracy and detection performance (RQ1-RQ3), we
set the observation window length < to 218 packets, which
corresponds to approximately 250 ms of traffic at 1 Mpps (the
mean packet rate of our workload). To evaluate mitigation
performance (RQ4), we use three different observation win-
dow sizes (< ∈ {214, 216, 218} packets). These sizes allow us
to investigate the effect of the window size on the detection
and mitigation delays, as well as to memory usage. While
218 packets represent ≈ 250 ms of traffic, 216 packets take
≈ 65 ms, and 214 packets take ≈ 15 ms. We define varying
value ranges for count-sketch dimensions (3 and F), sensitivity
coefficient (:), and observation window size (<). These vari-
ations enable a broad assessment of EUCLID under different
configurations. As detection relies on hash functions (for the
address frequency approximation step), we must address the
impact of their intrinsic bias on our proposed mechanism.
Hence, to assess the detection performance (RQ1-RQ3), we
conduct 15 repetitions for each configuration, using random
hashing coefficients. Moreover, we present the results at a
95% confidence level. In contrast, the mitigation performance
evaluation (RQ4) already assumes accurate detection. Thus, it
is not necessary to evaluate the effects of the hashing coeffi-
cients over multiple repetitions. We expect variability within
each experiment of the mitigation performance assessment.
As an attack progresses, mitigation accuracy changes between
different observation windows (OWs). Thus, we report the
95% confidence intervals for the mean of all the measurements
in the detection phase. Across all experiments (RQ1-RQ4), we
set the smoothing coefficient of the exponentially-weighted
moving averages and deviations to U = 20 · 2−8.

3Available at https://www.github.com/aclapolli/ddosd-cpp

B. Entropy Estimation Error

Resource constraints of programmable data planes require
space- and time-efficient designs. Thus, instead of attempting
to calculate exact entropies, we propose estimating these
values (§ IV-A2). While estimation reduces the demands for
memory space and processing time, it inexorably diminishes
accuracy. Such a loss of accuracy can hide traffic anomalies,
which would hinder detection performance. Consequently, we
must assess the accuracy of our entropy estimates as a function
of the count sketch dimensions (RQ1), which are the most
crucial factors for determining the accuracy of the sketch-
approximated frequencies [20].

In our extended count-sketch implementation, we store each
counter in a 32-bit register and its associated observation
window (OW) identifier in an 8-bit register. We store the
entropy estimate �̂ and the entropy norm estimate (̂ in 32-
bit registers using fixed-point notation with four fractional
bits. We populate the longest-prefix match lookup (LPM) table
for our pre-computed function, ensuring a maximum absolute
error of 2−4 for each entry. The resulting LPM table contains
a total of 245 TCAM entries of 32 bits each, i.e., 980 bytes.

5120
entries

5888
entries

Figure 5. Relative error of the entropy estimation as a function of the count-
sketch width and depth.

Figure 5 shows the relative estimation error for each count-
sketch depth and width level listed in Table I (first column).
By definition, the sketch width (F) is inversely related to
the probability of hashing collisions [20]. By following the
horizontal axis, we can observe how this factor affects the
estimation error: larger widths reduce errors, although this
reduction is attenuated until it stabilizes close to 1%. We
highlight that the pre-computed function also slightly impacts
the relative error, but the plot combines both influences.

Increases in the sketch depth 3 reduce the probability
of obtaining estimates from counters affected by hashing
collisions. By examining the error values for a single width,
we can observe how the depth affects accuracy. Nevertheless,
larger sketch depths require (i) processing more hash functions
for each packet and (ii) more execution steps to calculate the
median (see § IV-A1). We annotate Figure 5 with the total
number of sketch entries (5 888 and 5 120) in two specific
depths (3 = 16 and 3 = 4, respectively). These values reveal
that, for comparably-sized sketches, increasing the depths does
not significantly improve the accuracy of the estimates. Hence,
we decide to set 3 = 4 in the subsequent experiments.

https://www.github.com/aclapolli/ddosd-cpp

13

Table I
SYSTEM FACTOR LEVELS

Levels Used in Each Subsection
System Factors V-B V-C V-D V-E

Observation Window Size (<) 218 218 218 {214; 216; 218}
Hashing Coefficients (08 , 18) pseudo-random and pairwise-independent fixed
Count-Sketch Depth (3) {4, 8, 16} 4 4 4
Count-Sketch Width (F) {64, 368, 672, 976, 1280} 1280 1280
Sensitivity Coefficient (:) NA {0, 0.5, 1, ..., 8} 4 {4.875, 4.875, 3.625}
Defense Threshold (C) NA NA NA 64:, : ∈ {Z | − 16 ≤ : ≤ 16}

C. DDoS Attack Detection Performance

EUCLID allows network operators to configure the sensi-
tivity coefficient (:) in order to obtain a suitable trade-off
between the true-positive rate (TPR) and the false-positive
rate (FPR) of attack detection. In the detection performance
analysis, the TPR refers to the attack phase and indicates the
number of OWs in which we detect attacks divided by the
number of OWs in which there is an attack. The FPR refers
to the pre- and post-attack phases and indicates the number of
OWs in which we detect attacks divided by the total number
of OWs in the pre- and post-attack phases. Seeking to answer
RQ2, we first tune the factor : by observing its effects on
the TPR and the FPR (§ V-C1). Then, we study the detection
accuracy as related to the attack proportion and the memory
usage (§ V-C2)

1) Sensitivity Coefficient Effect: In this experiment, we set
the sketch dimensions to 3 = 4 and F = 1 280 (Section V-B).
The proportion of malicious packets to the total number of
packets during the attack is 5%. Figure 6 presents the TPR and
the FPR for attack detection as a function of the sensitivity
coefficient : . We can observe that for lower sensitivity coeffi-
cients, detection reaches excellent TPRs, i.e., close to 100%.
However, the elevated FPRs indicate excessive proportions of
false alarms. Following the horizontal axis, as we increase : ,
both TPR and FPR decrease until the mechanism ceases to
generate attack alarms. The false-positive rate decreases from
: = 0, reaching less than 10% for : ≥ 3.25. From this point
on, the true-positive rate remains close to 100% as long as
: ≤ 4.75. Thus, our mechanism is in its desired operating
zone when the sensitivity coefficient : is within [3.25, 4.75]
(green hachure). Due to network traffic variability, it may be
necessary to adjust : periodically. In our current design, it is
the responsibility of the network operator to set and update
: to an appropriate level. In future work, we will address
this by proposing an automatic self-tuning of the sensitivity
coefficient.

2) DDoS Attack Detection Accuracy: For this analysis, we
set the sensitivity coefficient (:) set to 3.5 (which is within the
operating range discussed in § V-C1). We now study the attack
detection accuracy of our mechanism under various count-
sketch widths (which correspond to memory utilization) and
proportions of malicious traffic (see Table I).

Figure 7 shows a curve for each attack proportion we
consider. As attacks become increasingly aggressive, the de-
tection accuracy reaches progressively higher rates (exceeding

Figure 6. Impact of the sensitivity coefficient : on the true-positive and
false-negative attack detection rates. The area in green highlights the desired
operating zone.

90%). This outcome stems from the more significant en-
tropy anomalies that stronger attacks cause. Along all curves,
we observe that the sketch width profoundly influences the
detection accuracy. This effect is noticeable even for less
intense attacks (3.5%), which EUCLID detects with accuracy
higher than 80% for F ≥ 976. As we increase sketch sizes,
entropy estimates become more accurate, which facilitates the
detection of subtler attacks.

Figure 7. DDoS attack detection accuracy in terms of memory utilization for
different proportions of malicious traffic.

While enlarging sketches does improve detection accuracy,
it also implies an increased memory footprint. We illustrate
how to calculate the static random-access memory (SRAM) re-
quirements as follows. First, recall from § IV-A3 that we track
entropies separately for source and destination IP addresses.
Thus, frequency approximation needs two sketches. Next, we

14

use the sketch dimensions to obtain the total number of
entries across both sketches. Then, we consider that each entry
consists of a 32-bit counter and an 8-bit observation window
identifier, totaling 40 bits per entry. Finally, we multiply
the total number of entries by the entry size. For instance,
assuming 3 = 4 and F = 976, we obtain 2 · 4 · 976 · 40 ≈ 312
kilobits, i.e., 38.125 kB of SRAM. The footprint just described
applies to each 1 Gbps link. Higher data rates demand larger
observation windows in order to enable a robust representation
of the address frequency distributions. Given that the count-
sketch estimation error is proportional both to 1/

√
< (where

< is the length of the observation window) and to the ℓ2 norm
of the address frequencies4, faster data links require using
proportionally larger sketches. Consequently, considering a 24-
port 10 Gbps programmable switch [14], we extrapolate the
EUCLID memory footprint for detection to 8.93 MB, which
amounts to 20% of the available SRAM (44.11 MB).

D. Comparison with Packet Sampling

Programmable switches can collect fine-grained data about
all forwarded packets, which facilitates the deployment of
highly-sensitive attack detection mechanisms. In contrast, de-
tection strategies that rely on packet sampling must operate
on significantly less data, which limits the detection accuracy.
We explore the relation between attack intensity and detection
accuracy by comparing EUCLID with an implementation of
our detection strategy that receives samples from an sFlow
collector (RQ3).

In this section, we perform our experiments using 3 = 4,
F = 1280, and : = 4 (the center of the operating zone
discussed in § V-C1). We assess the sFlow-based mecha-
nism using two different sampling rates: (i) 1:1 000, which
Phaal [54] suggests for a 1 Gbps link, and (ii) 1:100, in
an attempt to improve the detection results. Thus, we have
three different scenarios for the assessment: our strategy and
the two sFlow-based implementations. To ensure comparable
baselines, we set different observation window sizes < for
each scenario. For instance, during the time EUCLID processes
< packets, the sFlow collector exports only approximately
</1 000, or </100 packets, depending on the sampling rate.
Consequently, we scale < such that the time frames of the
three scenarios become approximately equal.

Figure 8 depicts the attack detection accuracy for the three
scenarios discussed above under different attack volume pro-
portions. The lower curve indicates that the 1:1 000 sampling
rate yields a severely degraded detection performance. At a
1:100 sampling rate, the sFlow-based implementation shows
a significantly improved accuracy. Nevertheless, EUCLID out-
performs the sFlow approach in every observed attack strength.

We also investigate the attack detection delay by analyzing
the timestamps of the packets in our workloads. We use
the timestamp of the first malicious packet to indicate the
beginning of the attack. We consider the time of detection
the timestamp of the last packet of the OW that identifies the
entropy anomaly. We observe that for lower attack proportions
(? ≤ 4%), packet sampling takes several seconds to detect an

4We assume the ℓ2 norm increases proportionally to the traffic rate.

Figure 8. DDoS attack detection accuracy: comparison with packet sampling
approaches.

attack. Under similar conditions, EUCLID detects an attack in
a fraction of the time, i.e., a few hundred milliseconds. Such a
lower delay may lead to earlier activation of attack mitigation
mechanisms, thus potentially preventing service degradation
or outage.

E. DDoS Attack Mitigation Performance

Whereas in the previous subsections, we investigate detec-
tion accuracy, in this subsection, we analyze the performance
of our mitigation strategy. In the mitigation performance
analysis, the true-positive rate (TPR) and the false-positive
rate (FPR) indicate, respectively, the proportions of packets
correctly and incorrectly identified as malicious. We under-
score that EUCLID was originally designed to handle high-rate
volumetric attacks (i.e., the packet rate is expected not to be
“low”). In evaluating the detection and mitigation components
of EUCLID, we look for the worst-case/tipping point, which
is different in each case. For the detection component, we put
it under stress with low proportions of malicious traffic (e.g.,
3% to 6%). This is when detection accuracy may degrade
(see the lowest curve in Figure 7), which is in line with
the literature [55]. Conversely, the mitigation component may
reach its limits when the amount of traffic subjected to further
inspection/filtering is high (e.g., 20% of malicious traffic).
Hence, we set the attack intensity to 20% (i.e., ? = 0.2). As for
the other factor levels, we take into consideration the results
from Subsection V-C regarding count-sketch dimensions (F
and 3) and sensitivity coefficient (:).

By design (Section IV), EUCLID raises attack alarms only at
the end of the observation windows (OWs) in which malicious
traffic causes excessive changes in entropy. Consequently,
mitigation starts operating only at the beginning of the next
OW. For instance, if a detectable incident emerges during
$,8 , our countermeasures become active as $,8+1 begins.
Therefore, we perform the experiments of this section under
different observation window (OW) lengths in order to inves-
tigate whether it is possible to (i) shorten the mitigation delay
and (ii) reduce the amount of memory required.

1) Mitigation Threshold Effect: For an observation window
size of < = 218 packets, we measure the effect of different
defense thresholds (C) in the interval [−1 024; 1 024], with 64-
packet increments. We consider observation windows from

15

$,8+1 to $,8+: , where 8 + 1 identifies the first window after
attack detection, and 8 + : indicates the last window in the
attack segment. Finally, we calculate 95% confidence intervals
for the mean TPR and FPR during the attack.

Figure 9 shows consistently high true-positive rates, be-
tween 98.7% and 100%, for thresholds C ≤ −256 packets.
After this point, for all tested values of C, the TPRs remain
elevated, ranging from 96.3% to 99.7%. This result indicates
that EUCLID correctly identifies most of the malicious packets
in the attack. As a result, by enforcing a security policy (e.g.,
discarding), our mechanism can prevent over 96% of the spuri-
ous traffic from disrupting services at their target. We can also
observe that the FPR quickly decreases as C increases. Notably,
for C ≥ 768 packets (approximately 0.25% of the window size),
the FPR becomes less than 0.7%. Such a low FPR indicates
that the mitigation threshold has near-perfect specificity, i.e.,
addresses whose observed frequency variations fall below the
mitigation threshold can be safely assumed legitimate. Since
the proportion of legitimate packets incorrectly classified as
suspects is negligible, applying a mitigation policy to such
packets is unlikely to cause noticeable problems to legitimate
users.

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

Figure 9. Effects of the defense threshold C on the true-positive and false-
positive packet classification rates.

2) Observation Window Size Effect: We now investigate the
performance of attack mitigation under different observation
window (OW) sizes. Measurement fluctuations related to these
different OW sizes require adjusting the sensitivity coefficient
(:) within the operating range (Table I, last column).

For all three factor levels of <, we observe similar out-
comes, i.e., the TPR remains over 90%, and the FPR quickly
decreases as the mitigation threshold C grows. Moreover, the C
value that yields near-zero FPRs varies with the OW size. We
summarize these results in Table II. These findings indicate
that reducing the observation window length does not hinder
the accuracy of our mitigation mechanism.

Considering the 1 Mpps average packet rate of our work-
load, an observation window with 218 packets corresponds to
approximately 250 ms of traffic. By reducing the OW length
to 214 packets, each OW will take close to 15 ms. Such
a reduction can further reduce the attack mitigation delay.
Since the memory space needed for frequency approximation
is proportional to the size of the OW (§ V-C2), we can

Table II
EFFECTS OF THE OBSERVATION WINDOW SIZE <.

OW Size (<) 214 216 218

Threshold (C) 96 384 768
TPR (%) [97.45, 98.34] [97.04, 98.81] [96.26, 99.74]
FPR (%) [0.00, 0.08] [0.00, 0.05] [0.00, 0.63]
Defense Delay ≈ 16 ms ≈ 64 ms ≈ 256 ms

also reduce the amount of SRAM required for detection and
mitigation.

3) Effects on Traffic Latency: Accurate measurements with
hardware-based experiments of the latency introduced by
EUCLID (actually, by any P4 design) will lead to results
that vastly vary depending on the specific devices employed.
Aiming to provide the reader with a more general analysis, we
determine a theoretical upper bound for latency. To do this,
we consider that our P416 prototype targets the RMT model
implementation by Bosshart et al. [14], whose switch chip: (i)
has a 1 GHz operating frequency; (ii) parses packet headers
in a single cycle; (iii) has 32 match-action stages in each
pipeline (ingress and egress); and (iv) performs each match-
action in a single cycle5. EUCLID uses only the ingress parser,
pipeline, and deparser processing blocks6 and does not require
packet recirculation. Therefore, a worst-case scenario incurs
the forwarding delay resulting from the sequential processing
of 34 stages (32 match-action + 2 [de]parser), at 1 ns per
stage, i.e., 34 ns. This analysis can be readily performed
for alternative targets, but it is reasonable to expect average
latencies in the order of tens of nanoseconds (including in
experimental studies).

F. Applicability and Limitations

Different DDoS attacks require distinct defense strategies.
Our evaluation has so far indicated that EUCLID is effective
against volumetric flooding attacks coming, e.g., from botnets
(i.e., high source address entropy and low destination address
entropy). Nevertheless, we can still reflect on our proposed
solution’s behavior under scenarios for which it was not
designed originally, such as semantic, increasing rate, and
amplification-based attacks.

Semantic Attacks. Semantic attacks are also known as
protocol exploitation or state exhaustion attacks [26]. These at-
tacks are generally low-rate and work by intentionally allowing
otherwise legitimate transactions to time out, thus withholding
and depleting resources on the target systems. Some notable
instances are the HTTP-based slow DDoS attacks discussed
in [56], such as Slow HTTP Headers (Slowloris), Slow HTTP
POST (RUDY), and Slow Read. Defending against this type
of attack requires tracking state information (at the transport
or application layer) for an extended time. EUCLID, by design,
observes network-layer traffic patterns; thus, it does not cover
semantic attacks. Defending against them would require a
different type of solution beyond our work scope.

Increasing-rate Attacks. In certain brute-force attacks, the
attack rate starts low and gradually increases, in an attempt

5Parallelism allows multiple match-actions in a single cycle.
6We only use the egress processing blocks to output diagnostic data.

16

to manipulate the baseline traffic characterization model, thus
evading detection [21]. To improve the robustness of the
traffic model under such “slow-start” attacks, the network
operator can adjust the sensitivity coefficient (§ IV-A3) and
the cooldown period (§ IV-B1). More specifically, he/she is
expected to tune these parameters more conservatively, making
EUCLID spend more time in the DEFENSE states (in which we
do not update the traffic model). Since the packet classification
FPR is remarkably low, we do not anticipate traffic overhead
issues from the more frequent activation of the mitigation
mechanism.

Amplification-based Attacks. Attacks that rely on am-
plification strategies would also cause entropy anomalies.
Differently from botnet-originated campaigns, however, ampli-
fication causes sudden, pronounced decreases in both source
and destination entropy measurements. As we discussed in
Section III-B, detection occurs whenever at least one of the
entropy measurements deviates from the model. Consequently,
a quick drop in destination entropy would make the Anomaly
Detection block issue an alarm and engage the mitigation
mechanisms. Regarding mitigation, given that the IP address
frequency variations caused by reflection attacks are still
anomalous, we can readily classify and treat malicious packets
accordingly.

Fluctuations in the Number of Flows. A trace with large
fluctuations in the number of flows would induce relevant en-
tropy variations. The scale of the entropy variations influences
how strict the traffic model is. If we train the model with traces
that exhibit large fluctuations, detection will also require large
anomalies. It is possible that flow accounting could add details
that might be useful to improve our mechanism accuracy.
However, our experiments show that the attacker’s behavior is
sufficiently disruptive to cause detectable entropy anomalies
within our attack model. Thus, we advocate that using IP
addresses is good enough for detection. Our tuning parameters
(e.g., the sensitivity coefficient) can be adjusted to what is
expected in a given scenario, allowing an operator to obtain
adequate attack detection FPR and TPR values. Moreover,
implementing flow accounting would require adding extra
memory for bookkeeping. Exploring this compelling research
avenue and assessing whether such a change would improve
accuracy is left as future work.

VI. LESSONS LEARNED AND INSIGHTS

While data plane programmability brings flexibility to
packet forwarding, implementing this paradigm on hardware
is a challenge. Obtaining an adequate trade-off between high
performance and reasonable production costs is paramount.
Modern programmable data planes reach this goal by carefully
delimiting reconfigurability to a core repertoire of primitives
related to packet forwarding (e.g., header parsing and match-
action tables). Moreover, these data planes do not imple-
ment several popular programming constructs (e.g., repetition
statements, stacks, and non-trivial mathematical operations).
Additionally, since the amount of memory directly influences
chip area and power consumption, packet switches provide
relatively small sizes of SRAM and TCAM. On the one

hand, these hardware design choices help to prevent stalls
in the packet processing pipeline as well as prohibitively
complex hardware layouts. On the other hand, algorithms for
programmable switches require particularly careful design and
implementation. We detail the most important lessons learned
from the design of EUCLID in the remainder of this section.

a) Limited syntactic expressiveness requires careful pro-
gramming practices: P4-programmable switches have limited
support for procedure definition and invocation (i.e., match-
action tables are not as flexible as the function call and return
instructions). Consequently, code reuse becomes challenging,
which makes the implementation process more intricate. In-
tuitively, a way to work around this limitation is to write
tools to generate P4 code automatically. However, perhaps it
would be better to enrich the P4 language with standardized
higher-level constructs that the compiler or preprocessor could
turn into native P4 code. This strategy could also promote
the widespread adoption and distribution of libraries with sta-
ble implementations of well-established building blocks (e.g.,
Bloom filters, count-sketches, and algorithms to approximate
non-trivial mathematical functions).

b) Event-driven processing can compensate for the ab-
sence of iterative procedures: In a general way, all real-
time systems have stringent time budgets. This characteristic
profoundly influences the architecture of programmable data
planes, which ultimately prompts algorithm redesign. In this
work, this observation emerges when addressing three design
challenges: (i) the summation of the individual address fre-
quency terms required by Equation 1, (ii) the need to reset
sketch counters between observation windows in order to avoid
outdated values, and (iii) the necessity to copy data between
sketches. It is unfeasible to iterate over entire sketches for
every single incoming packet since the resulting overhead
would exceed the time budget that line-rate packet processing
requires. Thus, we need to redesign iterative procedures as
event-driven strategies in which every packet arrival triggers
the execution of smaller, tractable steps. EUCLID handles
challenge (i) by gradually accumulating the entropy norm
variation as each packet arrives at the switch. We tackle
challenge (ii) by augmenting the sketch counters with an
observation window (OW) identifier ,�� and modifying the
count sketch operations such that accesses to outdated counters
produce an automatic reset followed by an update to the
current window ID. Thus, we defer the resetting of each cell
until they are necessary. Similarly, we approach challenge (iii)
by placing copy operations close to counter updates, so that,
right before resetting counters, we can perform the required
copies we discussed in § IV-B2.

c) The number of pipeline stages in the data plane
limits the size of multi-step procedures: The time budget of
programmable data planes also constrains the maximum length
of the code to deploy on the switch. As a result, attempts to
manage the absence of iteration (e.g., by resorting to loop
unrolling) and subroutines (e.g., by automatic generation of
repeated code segments) might not always be a viable strategy.
Thus, algorithm design needs to take into consideration the
space requirements for the resulting code.

17

d) Pre-computed functions can address the lack of non-
elementary mathematical functions: Current programmable
switches do not directly implement operations such as di-
visions, exponentiations, and logarithms. Thus, we need to
write algorithms to approximate these functions in terms of
the primitives already available on them. We can handle this
challenge by numerically analyzing the function signature
concerning its domain and image bounds. We do this to
identify opportunities for compact representations tailored to
the use-case at hand. In our work, there is the need to calculate
updates to the entropy norm terms, which depend on the binary
logarithm (Equation 10). The entropy norm update function
has strictly-bounded intervals for both domain (frequencies
ranging from one to the OW size) and image (Figure 4).
As a result, it is possible to build a memory-efficient longest
prefix match (LPM) table by aggregating domain entries with
close values while ensuring enough accuracy for our purposes.
Alternatively, for the general case, one can use numeric
algorithms explicitly developed for in-switch execution [47].

e) Floating-point arithmetic may not be essential to
operate numbers whose precision and range are strictly
constrained: As traditional packet forwarding requires only
integer arithmetic, switches typically lack floating-point in-
structions and registers. Nevertheless, integer arithmetic can
operate on fractional numbers given a fixed-point representa-
tion. Throughout this work, we express non-integer quantities
in fixed-point notation using scaling factors from 23 to 218.
These numbers are the smoothing and sensitivity coefficients,
the entropy norms, and the indices of central tendency and
dispersion. Our evaluation (Section V) shows that fixed-point
representation is sufficiently accurate both to detect and to
mitigate DDoS attacks.

f) The absence of dynamic memory allocation in the data
plane limits the flexibility of the self-tuning of the mechanism:
EUCLID has several tuning parameters (i.e., U, : , <, and C)
that the network operator can modify at runtime by updating
register values. However, changes in parameters that dictate
the memory size of data structure (i.e., the sketch dimensions
3 and F) are not straightforward. Since modern programmable
data planes do not provide dynamic memory management, the
compiler is responsible for allocating memory statically. Thus,
changes in memory layout require reinstalling the P4 program,
which is a disruptive operation. In this scenario, enhancing
the flexibility of self-tuning beyond simple changes in register
values demands the investigation of novel P4 constructs.

VII. CONCLUSION

In this paper, we proposed EUCLID, a novel real-time
DDoS attack detection and mitigation mechanism that can
be executed entirely in a programmable data plane. This
work shows that our P4-based design has the potential to
meet increasingly strict performance requirements in high-
volume networks. As another significant contribution, we
shared lessons learned during the design, implementation, and
evaluation of EUCLID, hoping these insights may be helpful
for future research on programmable networks. We also share
with the community the source code of our prototype imple-
mentation and of our analysis toolkit, which can be found at

https://www.github.com/asilha/euclid. The datasets used in the
evaluation can be obtained from CAIDA [52], [53].

Our experimental evaluation indicates that EUCLID can
detect and mitigate the effects of DDoS outbreaks quickly
and accurately. In a link with a traffic rate of one million
packets per second, EUCLID detects attacks and launches
its mitigation mechanism within 250 ms. Attack detection is
over 90% accurate, correctly signaling most DDoS incidents
while keeping the proportion of false alarms below 10%. We
observed that the detection accuracy of our mechanism is
superior to that of an approach based on packet sampling.
We estimate that deploying detection on all interfaces of a
10 Gbps switch requires a total of 9 MB of SRAM, well within
the capacity of existing programmable data plane targets.
Attack mitigation correctly identifies as suspects more than
96% of malicious packets, with a false-positive rate (FPR)
smaller than 1%. EUCLID can effectively steer the attack traffic
away from its intended target, thus preventing service outage.
The low FPR ensures that legitimate users can still access
the protected service. Our mitigation components require an
additional 375 kB of SRAM per 10 Gbps link.

As future work, we plan on providing EUCLID with dynamic
self-tuning of the sensitivity coefficient and of the mitigation
threshold in response to traffic patterns and trends. Such self-
tuning may build on strategies ranging from statistical methods
to machine learning techniques. On a different research path,
our roadmap also includes the investigation of novel P4
constructs to make it possible to modify data structure sizes
without disrupting network traffic.

ACKNOWLEDGMENTS

This work was partially funded by the National Coun-
cil for Scientific and Technological Development (CNPq -
441892/2016-7), the Coordination for the Improvement of
Higher Education Personnel (CAPES - Finance Code 1), the
São Paulo Research Foundation (FAPESP - 15/24494-8), the
Brazilian National Research and Educational Network (RNP),
and the National Science Foundation (NSF - CNS-1740911).

REFERENCES

[1] R. Hummel, C. Hildebrand, H. Modi, and G. Sockrider, “NETSCOUT
Threat Intelligence Report,” Netscout Systems, Inc., Tech. Rep., 2020,
retrieved on 2020-03-20. [Online]. Available: https://www.netscout.
com/threatreport

[2] T. Shani. (2019) Updated: This DDoS Attack Unleashed the Most
Packets Per Second Ever. Here’s Why That’s Important. Retrieved on
2020-03-20. [Online]. Available: https://bit.ly/33PR7zM

[3] C. Crane. (2019) The Largest DDoS Attacks in history. [Online]. Avail-
able: https://www.thesslstore.com/blog/largest-ddos-attack-in-history/

[4] S. Kottler. (2018, 3) February 28th DDoS incident report. GitHub.
[Online]. Available: https://githubengineering.com/ddos-incident-report/

[5] S. Hilton. (2016, 10) Dyn Analysis Summary Of Friday October
21 Attack. Oracle Dyn. [Online]. Available: https://dyn.com/blog/
dyn-analysis-summary-of-friday-october-21-attack/

[6] M. Jonker, A. King, J. Krupp, C. Rossow, A. Sperotto, and A. Dainotti,
“Millions of Targets under Attack: A Macroscopic Characterization of
the DoS Ecosystem,” in Proceedings of the 2017 Internet Measurement
Conference, ser. IMC ’17. New York, NY, USA: Association
for Computing Machinery, 2017, pp. 100–113. [Online]. Available:
https://doi.org/10.1145/3131365.3131383

[7] A. Chadd, “DDoS attacks: past, present and future,” Network
Security, vol. 2018, no. 7, pp. 13–15, 2018, retrieved on 2018-12-
01. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1353485818300692

https://www.github.com/asilha/euclid
https://www.netscout.com/threatreport
https://www.netscout.com/threatreport
https://bit.ly/33PR7zM
https://www.thesslstore.com/blog/largest-ddos-attack-in-history/
https://githubengineering.com/ddos-incident-report/
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://doi.org/10.1145/3131365.3131383
http://www.sciencedirect.com/science/article/pii/S1353485818300692
http://www.sciencedirect.com/science/article/pii/S1353485818300692

18

[8] NETSCOUT Systems, Inc., “14th Annual Worldwide Infrastructure
Security Report (WISR),” Netscout Systems, Inc., Tech. Rep., 2019,
retrieved on 2020-03-20. [Online]. Available: https://www.netscout.
com/report/

[9] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: An
intellectual history of programmable networks,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 2, pp. 87–98, Apr.
2014. [Online]. Available: http://doi.acm.org/10.1145/2602204.2602219

[10] P. Phaal, S. Panchen, and N. McKee. (2001, 9) InMon Corporation’s
sFlow: A Method for Monitoring Traffic in Switched and Routed
Networks. Internet Requests for Comments. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc3176.txt

[11] B. Claise. (2004, 10) Cisco Systems NetFlow Services Export
Version 9. Internet Requests for Comments. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc3954.txt

[12] The Open Networking Foundation. (2015, 3) OpenFlow Switch Specifi-
cation Version 1.5.1. [Online]. Available: https://www.opennetworking.
org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf

[13] M. Moshref, M. Yu, and R. Govindan, “Resource/Accuracy Tradeoffs
in Software-defined Measurement,” in Proceedings of the Second ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking,
ser. HotSDN ’13. New York, NY, USA: ACM, 2013, pp. 73–78.
[Online]. Available: http://doi.acm.org/10.1145/2491185.2491196

[14] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown,
M. Izzard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis:
Fast programmable match-action processing in hardware for SDN,” in
Proceedings of the ACM SIGCOMM 2013 Conference, ser. SIGCOMM
’13. New York, NY, USA: ACM, 2013, pp. 99–110. [Online].
Available: http://doi.acm.org/10.1145/2486001.2486011

[15] A. Gupta, R. Birkner, M. Canini, N. Feamster, C. Mac-Stoker, and
W. Willinger, “Network Monitoring As a Streaming Analytics Problem,”
in Proceedings of the 15th ACM Workshop on Hot Topics in Networks,
ser. HotNets ’16. New York, NY, USA: ACM, 2016, pp. 106–112.
[Online]. Available: http://doi.acm.org/10.1145/3005745.3005748

[16] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Alizadeh,
V. Jeyakumar, and C. Kim, “Language-Directed Hardware Design for
Network Performance Monitoring,” in Proceedings of the Conference
of the ACM Special Interest Group on Data Communication, ser.
SIGCOMM ’17. New York, NY, USA: ACM, 2017, pp. 85–98.
[Online]. Available: http://doi.acm.org/10.1145/3098822.3098829

[17] J. Boite, P. A. Nardin, F. Rebecchi, M. Bouet, and V. Conan, “Statesec:
Stateful monitoring for DDoS protection in software defined networks,”
in 2017 IEEE Conference on Network Softwarization (NetSoft), 7 2017,
pp. 1–9. [Online]. Available: https://doi.org/10.1109/NETSOFT.2017.
8004113

[18] A. C. Lapolli, J. A. Marques, and L. P. Gaspary, “Offloading Real-
time DDoS Attack Detection to Programmable Data Planes,” in 2019
IFIP/IEEE Symposium on Integrated Network and Service Management
(IM), 4 2019, pp. 19–27.

[19] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 3, pp. 87–
95, Jul. 2014. [Online]. Available: http://doi.acm.org/10.1145/2656877.
2656890

[20] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items
in data streams,” in Proceedings of the 29th International Colloquium
on Automata, Languages and Programming, ser. ICALP ’02. London,
UK, UK: Springer-Verlag, 2002, pp. 693–703. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646255.684566

[21] J. Mirkovic and P. Reiher, “A taxonomy of DDoS attack and DDoS
defense mechanisms,” ACM SIGCOMM Computer Communication
Review, vol. 34, no. 2, pp. 39–53, 2004. [Online]. Available:
https://doi.org/10.1145/997150.997156

[22] T. Peng, C. Leckie, and K. Ramamohanarao, “Survey of network-
based defense mechanisms countering the DoS and DDoS problems,”
ACM Computing Surveys, vol. 39, no. 1, 2007. [Online]. Available:
https://doi.org/10.1145/1216370.1216373

[23] S. T. Zargar, J. Joshi, and D. Tipper, “A survey of defense mechanisms
against distributed denial of service (DDoS) flooding attacks,” IEEE
Communications Surveys & Tutorials, vol. 15, no. 4, pp. 2046–2069,
2013. [Online]. Available: https://doi.org/10.1109/SURV.2013.031413.
00127

[24] N. Hoque, M. H. Bhuyan, R. C. Baishya, D. K. Bhattacharyya,
and J. K. Kalita, “Network attacks: Taxonomy, tools and systems,”
Journal of Network and Computer Applications, vol. 40, pp. 307–324,

2014. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1084804513001756

[25] N. Hoque, D. K. Bhattacharyya, and J. K. Kalita, “Botnet in DDoS
attacks: Trends and challenges,” IEEE Communications Surveys &
Tutorials, vol. 17, no. 4, pp. 2242–2270, 2015. [Online]. Available:
https://doi.org/10.110910.1109/COMST.2015.2457491

[26] R. Swami, M. Dave, and V. Ranga, “Software-Defined Networking-
Based DDoS Defense Mechanisms,” ACM Computing Surveys, vol. 52,
no. 2, Apr. 2019. [Online]. Available: https://doi.org/10.1145/3301614

[27] M. Zhang, G. Li, S. Wang, C. Liu, A. Chen, H. Hu, G. Gu, q. li,
M. Xu, and J. Wu, “Poseidon: Mitigating Volumetric DDoS Attacks
with Programmable Switches,” in NDSS, 01 2020. [Online]. Available:
https://bit.ly/2vZviRE

[28] M. Bonfim, M. Santos, K. Dias, and S. Fernandes, “A real-
time attack defense framework for 5G network slicing,” Software:
Practice and Experience, vol. n/a, no. n/a, 2020. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2800

[29] Y. Xu and Y. Liu, “DDoS attack detection under SDN context,” in IEEE
INFOCOM 2016 - The 35th Annual IEEE International Conference
on Computer Communications, 4 2016, pp. 1–9. [Online]. Available:
https://doi.org/10.1109/INFOCOM.2016.7524500

[30] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “OpenState:
Programming platform-independent stateful OpenFlow applications
inside the switch,” ACM SIGCOMM Computer Communication
Review, vol. 44, no. 2, pp. 44–51, Apr. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2602204.2602211

[31] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with OpenSketch,” in 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 13). Lombard, IL: USENIX, 2013,
pp. 29–42. [Online]. Available: https://www.usenix.org/conference/
nsdi13/technical-sessions/presentation/yu

[32] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with
UnivMon,” in Proceedings of the 2016 ACM SIGCOMM Conference,
ser. SIGCOMM ’16. New York, NY, USA: ACM, 2016, pp. 101–114.
[Online]. Available: http://doi.acm.org/10.1145/2934872.2934906

[33] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic Sketch: Adaptive and fast network-wide
measurements,” in Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, ser. SIGCOMM ’18.
New York, NY, USA: ACM, 2018, pp. 561–575. [Online]. Available:
http://doi.acm.org/10.1145/3230543.3230544

[34] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-based change
detection: methods, evaluation, and applications,” in Proceedings of the
3rd ACM SIGCOMM conference on Internet measurement, 2003, pp.
234–247. [Online]. Available: https://doi.org/10.1145/948205.948236

[35] C. Wang, T. T. N. Miu, X. Luo, and J. Wang, “SkyShield:
A sketch-based defense system against application layer DDoS
attacks,” IEEE Transactions on Information Forensics and Security,
vol. 13, no. 3, pp. 559–573, 3 2018. [Online]. Available: https:
//doi.org/10.1109/TIFS.2017.2758754

[36] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “AVANT-GUARD:
Scalable and Vigilant Switch Flow Management in Software-defined
Networks,” in Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security, ser. CCS ’13. New
York, NY, USA: ACM, 2013, pp. 413–424. [Online]. Available:
http://doi.acm.org/10.1145/2508859.2516684

[37] Y. Afek, A. Bremler-Barr, and L. Shafir, “Network anti-spoofing with
SDN data plane,” in IEEE INFOCOM 2017 - IEEE Conference on
Computer Communications, 5 2017, pp. 1–9. [Online]. Available:
https://doi.org/10.1109/INFOCOM.2017.8057008

[38] K. Tavares and T. Ferreto, “DDoS on Sketch: Spoofed DDoS attack
defense with programmable data planes using sketches in SDN,” in
Anais do Simpósio Brasileiro de Redes de Computadores e Sistemas
Distribuı́dos (SBRC), vol. 37, 2019.

[39] F. Paolucci, F. Civerchia, A. Sgambelluri, A. Giorgetti, F. Cugini, and
P. Castoldi, “P4 edge node enabling stateful traffic engineering and
cyber security,” IEEE/OSA Journal of Optical Communications and
Networking, vol. 11, no. 1, pp. A84–A95, 2019. [Online]. Available:
http://jocn.osa.org/abstract.cfm?URI=jocn-11-1-A84

[40] G. Cormode and S. Muthukrishnan, “An improved data stream
summary: the count-min sketch and its applications,” Journal of
Algorithms, vol. 55, no. 1, pp. 58–75, 2005. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0196677403001913

[41] J. Xing, W. Wu, and A. Chen, “Architecting programmable data plane
defenses into the network with FastFlex,” in Proceedings of the 18th
ACM Workshop on Hot Topics in Networks, ser. HotNets ’19. New

https://www.netscout.com/report/
https://www.netscout.com/report/
http://doi.acm.org/10.1145/2602204.2602219
http://www.rfc-editor.org/rfc/rfc3176.txt
http://www.rfc-editor.org/rfc/rfc3954.txt
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
http://doi.acm.org/10.1145/2491185.2491196
http://doi.acm.org/10.1145/2486001.2486011
http://doi.acm.org/10.1145/3005745.3005748
http://doi.acm.org/10.1145/3098822.3098829
https://doi.org/10.1109/NETSOFT.2017.8004113
https://doi.org/10.1109/NETSOFT.2017.8004113
http://doi.acm.org/10.1145/2656877.2656890
http://doi.acm.org/10.1145/2656877.2656890
http://dl.acm.org/citation.cfm?id=646255.684566
https://doi.org/10.1145/997150.997156
https://doi.org/10.1145/1216370.1216373
https://doi.org/10.1109/SURV.2013.031413.00127
https://doi.org/10.1109/SURV.2013.031413.00127
http://www.sciencedirect.com/science/article/pii/S1084804513001756
http://www.sciencedirect.com/science/article/pii/S1084804513001756
https://doi.org/10.110910.1109/COMST.2015.2457491
https://doi.org/10.1145/3301614
https://bit.ly/2vZviRE
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2800
https://doi.org/10.1109/INFOCOM.2016.7524500
http://doi.acm.org/10.1145/2602204.2602211
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/yu
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/yu
http://doi.acm.org/10.1145/2934872.2934906
http://doi.acm.org/10.1145/3230543.3230544
https://doi.org/10.1145/948205.948236
https://doi.org/10.1109/TIFS.2017.2758754
https://doi.org/10.1109/TIFS.2017.2758754
http://doi.acm.org/10.1145/2508859.2516684
https://doi.org/10.1109/INFOCOM.2017.8057008
http://jocn.osa.org/abstract.cfm?URI=jocn-11-1-A84
http://www.sciencedirect.com/science/article/pii/S0196677403001913

19

York, NY, USA: Association for Computing Machinery, 2019, pp.
161–169. [Online]. Available: https://doi.org/10.1145/3365609.3365860

[42] C. E. Shannon, “A mathematical theory of communication,” Bell Systems
Technical Journal, vol. 27, pp. 623–656, 1948.

[43] A. Lakhina, M. Crovella, and C. Diot, “Mining anomalies using traffic
feature distributions,” ACM SIGCOMM Computer Communication
Review, vol. 35, no. 4, pp. 217–228, Aug. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1090191.1080118

[44] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “An empirical
evaluation of information metrics for low-rate and high-rate DDoS
attack detection,” Pattern Recognition Letters, vol. 51, pp. 1–7,
2015. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S016786551400244X

[45] S. W. Roberts, “Control chart tests based on geometric
moving averages,” Technometrics, vol. 1, no. 3, pp. 239–250,
1959. [Online]. Available: https://www.tandfonline.com/doi/abs/10.
1080/00401706.1959.10489860

[46] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-Hitter Detection Entirely in the Data Plane,” in
Proceedings of the Symposium on SDN Research, ser. SOSR ’17.
New York, NY, USA: ACM, 2017, pp. 164–176. [Online]. Available:
http://doi.acm.org/10.1145/3050220.3063772

[47] D. Ding, M. Savi, and D. Siracusa, “Estimating logarithmic and ex-
ponential functions to track network traffic entropy in P4,” in 2020
IEEE/IFIP Network Operations and Management Symposium (NOMS),
04 2020.

[48] G. Cormode, “Sketch techniques for approximate query processing,”
Foundations and Trends® in Databases, vol. 4, no. 1–3, pp. 1–294,
2011. [Online]. Available: http://dx.doi.org/10.1561/1900000004

[49] Barefoot Networks. (2020) Tofino: World’s Fastest P4-Programmable
Ethernet Switch ASICs. [Online]. Available: https://barefootnetworks.
com/products/brief-tofino/

[50] The P4 Language Consortium. (2020) BMv2. P4 Language Consortium.
[Online]. Available: https://github.com/p4lang/behavioral-model

[51] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Vargaftik, A. Berger,
G. Mendelson, M. Alizadeh, S.-T. Chuang, I. Keslassy, A. Orda,
and T. Edsall, “DRMT: Disaggregated Programmable Switching,” in
Proceedings of the Conference of the ACM Special Interest Group
on Data Communication, ser. SIGCOMM ’17. New York, NY,
USA: Association for Computing Machinery, 2017, p. 1–14. [Online].
Available: https://doi.org/10.1145/3098822.3098823

[52] CAIDA. (2016) The CAIDA UCSD Anonymized Internet Traces
2016. [Online]. Available: http://www.caida.org/data/passive/passive
2016 dataset.xml

[53] ——. (2007) The CAIDA UCSD DDoS Attack 2007 Dataset.
[Online]. Available: http://www.caida.org/data/passive/ddos-20070804
dataset.xml

[54] P. Phaal. (2009, 6) sFlow: Sampling Rates. [Online]. Available:
https://blog.sflow.com/2009/06/sampling-rates.html

[55] Y. Xiang, K. Li, and W. Zhou, “Low-Rate DDoS Attacks Detection
and Traceback by Using New Information Metrics,” IEEE Transactions
on Information Forensics and Security, vol. 6, no. 2, pp. 426–437,
2011. [Online]. Available: https://doi.org/10.1109/TIFS.2011.2107320

[56] N. Muraleedharan and B. Janet, “Behaviour analysis of HTTP based
slow denial of service attack,” in 2017 International Conference
on Wireless Communications, Signal Processing and Networking
(WiSPNET), 2017, pp. 1851–1856. [Online]. Available: https://doi.org/
10.1109/WiSPNET.2017.8300082

Alexandre Ilha holds a B.Sc. in Computer Science
and a specialization certificate in Cybersecurity, both
received from the Federal University of Rio Grande
do Sul (UFRGS), Brazil, in 2006 and 2019. He is
currently pursuing the M.Sc. degree in Computer
Science at UFRGS, investigating security mecha-
nisms that leverage data plane programmability to
improve network monitoring and intrusion detection
systems performance. His objective is to advance
the state-of-the-art of network security to overcome
increasingly more challenging scenarios.

Ângelo Cardoso Lapolli holds a B.Sc. in Computer
Engineering and an M.Sc. in Computer Science,
both received from the Federal University of Rio
Grande do Sul (UFRGS), Brazil, in 2014 and 2019.
His main research interest is network management,
with emphasis on the design of security mechanisms
founded on software-defined networking and data
plane programmability.

Jonatas Adilson Marques holds a B.Sc. in Com-
puter Science and an M.Sc. in Applied Comput-
ing, both received from the Santa Catarina State
University (UDESC), Brazil, in 2015 and 2017,
respectively. He is currently pursuing the Ph.D.
degree with the Institute of Informatics of the Fed-
eral University of Rio Grande do Sul (UFRGS),
Brazil, doing research in network management, with
a focus on software-defined networking and network
programmability. His goal is to conceive techniques
and systems that make use of the new capabilities

of programmable networks to improve how networks are managed and enable
them to support both emerging and future Internet applications.

Luciano Paschoal Gaspary holds a Ph.D. in Com-
puter Science (UFRGS, 2002). He is currently
Deputy Dean and Associate Professor at the Insti-
tute of Informatics, UFRGS. He is also the current
Editor-in-Chief for Springer’s Journal of Network
and Systems Management. From 2008 to 2014,
he worked as Director of the National Laboratory
on Computer Networks (LARC) and, from 2009
to 2013, was Managing Director of the Brazilian
Computer Society (SBC). Prof. Gaspary has been
involved in various research areas, mainly computer

networks, network management, and computer system security. He is the
author of more than 200 full papers published in leading peer-reviewed
publications and has a history of dedication to research activities such as
the organization of scientific events, participation in the TPC of relevant
symposia, and participation as an editorial board member of various journals.
Further information regarding Prof. Gaspary’s biography can be found at
https://www.inf.ufrgs.br/∼paschoal/.

View publication statsView publication stats

https://doi.org/10.1145/3365609.3365860
http://doi.acm.org/10.1145/1090191.1080118
http://www.sciencedirect.com/science/article/pii/S016786551400244X
http://www.sciencedirect.com/science/article/pii/S016786551400244X
https://www.tandfonline.com/doi/abs/10.1080/00401706.1959.10489860
https://www.tandfonline.com/doi/abs/10.1080/00401706.1959.10489860
http://doi.acm.org/10.1145/3050220.3063772
http://dx.doi.org/10.1561/1900000004
https://barefootnetworks.com/products/brief-tofino/
https://barefootnetworks.com/products/brief-tofino/
https://github.com/p4lang/behavioral-model
https://doi.org/10.1145/3098822.3098823
http://www.caida.org/data/passive/passive_2016_dataset.xml
http://www.caida.org/data/passive/passive_2016_dataset.xml
http://www.caida.org/data/passive/ddos-20070804_dataset.xml
http://www.caida.org/data/passive/ddos-20070804_dataset.xml
https://blog.sflow.com/2009/06/sampling-rates.html
https://doi.org/10.1109/TIFS.2011.2107320
https://doi.org/10.1109/WiSPNET.2017.8300082
https://doi.org/10.1109/WiSPNET.2017.8300082
https://www.inf.ufrgs.br/~paschoal/
https://www.researchgate.net/publication/348091015

	Introduction
	Related Work
	Foundations of DDoS Attack Detection and Mitigation
	Attack Scenario and Threat Model
	Traffic Characterization and Anomaly Detection
	Inferring Intent from Frequency Variation Anomalies

	Our Design for In-Network DDoS Attack Detection and Mitigation
	Collecting Traffic Statistics
	Frequency Approximation
	Entropy Estimation
	Traffic Characterization
	Attack Detection

	Attack Mitigation
	Defense Readiness
	Frequency Variation Analysis
	Packet Classification
	Policy Enforcement

	Evaluation
	Evaluation Methodology and Experimental Setup
	Entropy Estimation Error
	DDoS Attack Detection Performance
	Sensitivity Coefficient Effect
	DDoS Attack Detection Accuracy

	Comparison with Packet Sampling
	DDoS Attack Mitigation Performance
	Mitigation Threshold Effect
	Observation Window Size Effect
	Effects on Traffic Latency

	Applicability and Limitations

	Lessons Learned and Insights
	Conclusion
	References
	Biographies
	Alexandre Ilha
	Ângelo Cardoso Lapolli
	Jonatas Adilson Marques
	Luciano Paschoal Gaspary

