
Probabilistic Symbolic Execution

Jaco Geldenhuys
Stellenbosch University

Stellenbosch, South Africa
jaco@cs.sun.ac.za

Matthew B. Dwyer
University of Nebraska -

Lincoln
Lincoln, NE, USA

dwyer@cse.unl.edu

Willem Visser
Stellenbosch University

Stellenbosch, South Africa
wvisser@cs.sun.ac.za

ABSTRACT
The continued development of efficient automated decision
procedures has spurred the resurgence of research on sym-
bolic execution over the past decade. Researchers have ap-
plied symbolic execution to a wide range of software anal-
ysis problems including: checking programs against con-
tract specifications, inferring bounds on worst-case execu-
tion performance, and generating path-adequate test suites
for widely used library code.

In this paper, we explore the adaptation of symbolic ex-
ecution to perform a more quantitative type of reasoning
— the calculation of estimates of the probability of execut-
ing portions of a program. We present an extension of the
widely used Symbolic PathFinder symbolic execution system
that calculates path probabilities. We exploit state-of-the-
art computational algebra techniques to count the number
of solutions to path conditions, yielding exact results for
path probabilities. To mitigate the cost of using these tech-
niques, we present two optimizations, PC slicing and count
memoization, that significantly reduce the cost of probabilis-
tic symbolic execution. Finally, we present the results of an
empirical evaluation applying our technique to challenging
library container implementations and illustrate the benefits
that adding probabilities to program analyses may offer.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and De-
bugging

General Terms
Verification, Experimentation

Keywords
Symbolic execution, probabilistic analysis, model counting,
testing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’12, July 15–20, 2012, Minneapolis, MN, USA
Copyright 12 ACM 978-1-4503-1454-1/12/07 ...$10.00.

1. INTRODUCTION
Understanding the behavior of a program is central to the

process of testing it. Most of the time we are happy with just
determining whether a behavior can, or can’t, happen, but
we believe we can understand program behavior even better
with more fine-grained information that allows one to know
how likely a behavior is to occur. We show that with a
combination of symbolic execution and model counting one
can do probabilistic symbolic execution which allows us to
assign probabilities to program paths.

Symbolic execution explores the execution tree of a pro-
gram using symbolic values (instead of actual values) for the
inputs. Each execution path is described by a conjunction
of constraints on the inputs, known as a path condition. The
paths can be explored in various ways — depth-first order
is arguably the simplest and most common — and are con-
structed incrementally. As each vertex of the execution tree
is reached, the (partial) path condition that describes the
path from the root to the vertex is evaluated: if it is satisfi-
able, the search continues. If not, that branch of the tree is
known to be unreachable. Satisfiability checking has a 0–1
outcome, but what about all of the real values in between?
The values 0 and 1 are in fact coarse approximations of the
probability that a given path condition is true. This paper
deals with finer approximations of the probability, and, in
the extreme, its exact calculation. We discuss the theory,
implementation and potential applications of this idea and
present empirical evidence to demonstrate its feasibility.

Calculating the probability involves counting the number
of solutions to a path condition (known as model counting)
and dividing it by the total space of values of the inputs
(the latter is simply the product of all the input domain
sizes). This only works if the inputs are uniformly dis-
tributed within their domain, which is an assumption we use
here. For the generation of path conditions we use Symbolic
PathFinder (SPF) [27] the symbolic execution extension to
Java PathFinder and for counting the solutions we use the
LattE [31] tool. We restrict ourselves to the domain of lin-
ear integer arithmetic, since this is supported by LattE and
SPF. The main contributions of this work are:

• A demonstration of how to add path probabilities to
symbolic analysis using model counting;

• optimizations to make model counting scale;

• applications of our approach, including discovering a
previously unknown error; and

• open-source implementation as part of SPF.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’12, July 15–20, 2012, Minneapolis, MN, USA
Copyright 2012 ACM 978-1-4503-1454-1/12/07 ...$15.00

166

1 int classify(int a, int b, int c) {
2 if (a<=0 || b<=0 || c<=0) return 4;
3 int type =0;
4 if (a==b) type +=1;
5 if (a==c) type +=2;
6 if (b==c) type +=3;
7 if (type ==0) {
8 if (a+b<=c || b+c<=a || a+c>=b) type =4;
9 else type =1;

10 return type;
11 }
12 if (type >3) type =3;
13 else if (type ==1 && a+b>c) type =2;
14 else if (type ==2 && a+c>b) type =2;
15 else if (type ==3 && b+c>a) type =2;
16 else type =4;
17 return type;
18 }

Figure 1: Solution for Myers’s triangle problem

2. MOTIVATING EXAMPLE
Consider the function shown in Figure 1; this is a solution

by DeMillo and Offutt [6, Figure 6] for the classic triangle
classification problem of Myers [24]. Its inputs are the three
side lengths of a triangle, and it returns 1 if the triangle is
scalene, 2 if isosceles, 3 if equilateral, and 4 if it is not a
triangle at all. Suppose for now that a, b, c ∈ [−1000, 1000],
and that the arguments are independently and uniformly
distributed across this range.

How do we go about verifying the correctness of this code?
Typically a hand-crafted or random test suite would be used
for this function. However, apart from the effort of determin-
ing the correct output, there is no guarantee that all errors
will be found, and this problem is notoriously difficult to
test thoroughly.

While not a cure-all, the use of probabilistic symbolic ex-
ecution can provide valuable insights about the behavior of
the function. For example, what is the probability that the
function classifies a set of inputs as equilateral? Each vari-
able can take one of 2001 values, so the size of the input
space is 20013. Of these, there are 1000 triangles with three
equal sides: (1, 1, 1), (2, 2, 2), . . . , (1000, 1000, 1000). The
probability that an input forms an equilateral triangle is
therefore 1000/20013 = 1.25×10−7. This is exactly the an-
swer computed by the system described in this paper. Here
are the classifications:

Classification Probability

scalene 2.07×10−2

isosceles 2.80×10−4

equilateral 1.25×10−7

illegal 9.79×10−1

The low probability of an equilateral triangle means that
we would have to execute a large number of random tests
before detecting any potential error. In this simple example
it was still possible to calculate the expected probability by
hand. There was, however, no guarantee that it would agree
with the code, and if our function contains a bug, we would
have noticed the discrepancy between the calculated and
expected probability.

Even — especially — when it is impossible to calculate the
expected probability of a behavior by hand, this approach
can still guide verification. For example, the probability that

the assignment in line 12 is executed, is also 1.25×10−7. This
strongly suggests that the assignment happens if and only
if the input forms an equilateral triangle. From the code
it is clear that illegal triangles are detected in lines 2, 8,
and 16, and the probability that these lines are triggered is
0.875, 0.104, and 9.36×10−5, respectively. In other words,
89.395% of illegal triangles are detected in line 2, 10.595%
in line 8, and only a very small percentage in line 16 (fewer
than 0.00956%). In this case, line 16 is still indispensable,
but in other situations this kind of observation may suggest
ways to optimize the performance of code.

As it turns out, this example contains a bug that shows
up when we increase the range to Java’s full integer range.
The additions in the code can result in arithmetic overflow
and the input a = x, b = y, c = 1 is incorrectly classified as
an illegal triangle whenever x+y ≥ 231. This is a hard error
to notice unless you know what you are looking for. How-
ever, there is another way. We have taken three alternative
solutions (two correct, one incorrect) to the same problem
from [34]. The variable values a, b, c ∈ [0, 230] produce the
following probabilities:

scalene isosceles equilateral illegal

A 4.99×10−1 2.10×10−9 8.67×10−19 5.00×10−1

B 4.99×10−1 2.79×10−9 8.67×10−19 5.00×10−1

C 4.99×10−1 2.10×10−9 8.67×10−19 5.00×10−1

D 1.67×10−1 2.10×10−9 8.67×10−19 8.33×10−1

The correct solutions A and C agree on all classifications.
Solution B produces too many isosceles classifications (and
too few illegal triangles, although the discrepancy is not vis-
ible in the table) and our solution D produces too few sca-
lene triangles and too many illegal triangles. This illustrates
that even if we do not know that A and C are test oracles,
our method can be useful to compare independent programs
and, with more detailed analysis, can help to pinpoint the
exact differences. The analysis of A, B, C, and D takes 3,
10, 8, and 4 seconds to complete.

3. ADDING PROBABILITIES TO SYMBO-
LIC EXECUTION

We begin with a short review of how symbolic execution
is performed then discuss our adaptation to calculate path
probabilities. Our algorithm for probabilistic symbolic exe-
cution permits, in principle, a variety of different approaches
for calculating or estimating probabilities from path condi-
tions. In this section, we discuss our use of algorithms for
precise model counting, developed for counting lattice points
and the volume of convex polytopes, and how we have opti-
mized the mapping of path conditions onto those algorithms.

3.1 Background
For simplicity, we consider a simple three-address lan-

guage where statements are identified by their location, l.
There are two classes of instruction: branches, identified by
predicate branch(l), whose branch condition is cond(l), and
non-branching instructions of the form v = e. We illustrate
the algorithms for variable operands, but constants are of
course permitted and their handling is straightforward. For
branches, the target location is target(l) and for all state-
ments the next location is next(l).

Symbolic execution is a non-standard interpretation of
a program which represents the program’s execution state

167

symbolically. The state consists of two parts: a path con-
dition (PC) which is a conjunctive formula, φ, encoding the
branch decisions which must be true to reach a program
location, and a map from program variables to symbolic
expressions over constants and free variables. The expres-
sion associated with variable v is accessed from the map as
m[v] and a map update, with a new expression e, is writ-
ten m〈v, e〉. We extend this notation to expressions: if e
is a constant or free variable, then m[e] = e. Otherwise, if
e = e1� e2 for some operator �, then m[e] = m[e1]�m[e2].

Algorithm 1 symbolicExecute(l, φ,m)

while ¬branch(l) do
m← m〈v, e〉
l← next(l)

end while
c← m[cond(l)]
if SAT(φ ∧ c) then
symbolicExecute(target(l), φ ∧ c,m)

end if
if SAT(φ ∧ ¬c) then
symbolicExecute(next(l), φ ∧ ¬c,m)

end if

Algorithm 1 sketches the key elements of symbolic execu-
tion. The initial call is symbolicExecute(l0, true,m0) where
l0 is the initial location in the program, the initial PC is true,
andm0 is the initial map. The initial map is formed by intro-
ducing a new free variable fv for each of the program’s input
variables Input . In other words, ∀v ∈ Input : m0[v] = fv.

Conceptually, symbolic execution can be decomposed into
the processing of regions that lie between branch statements.
At the beginning of such a region all non-branching state-
ments are processed by updating the map component of the
state and advancing the location. Then each branch out-
come is considered. For the positive branch outcome, a for-
mula conjoining the current PC and the branch condition
is formed. If that formula is satisfiable, then it becomes
the new path condition and the region of code rooted at
the branch target is processed. The negative outcome is
processed identically, except that the branch condition is
negated and the next region processed begins at the next
location of the branch.

The simple algorithm sketch shown here does not include
a number of features found in modern symbolic execution
frameworks. For instance, this algorithm makes no attempt
to bound the search.

The resurgence of interest in symbolic execution in recent
years owes much to advances in automated decision proce-
dures. Solvers such as Z3 [5] include numerous optimiza-
tions that allow them to handle a wide range of SAT queries
efficiently. For example, incremental solving optimizes the
processing of a sequence of SAT calls where the formulae in
the sequence are extended by adding additional conjuncts.
As one can see from the recursive nature of Algorithm 1, this
is precisely the nature of SAT calls in symbolic execution.

3.2 Probabilistic Symbolic Execution
Algorithm 2 sketches the key elements of our extension

of symbolic execution to compute path probabilities. We
enrich the state with a third component — the path proba-
bility — which is initially set to 1. The algorithm proceeds
identically through non-branching statements.

Algorithm 2 probSymbolicExecute(l, φ,m, p)

while ¬branch(l) do
m← m〈v, e〉
l← next(l)

end while
c← m[cond(l)]
φ′ ← slice(φ, c)
pc ← prob(φ′ ∧ c)/prob(φ′)
if SAT(φ′ ∧ c) then
probSymbolicExecute(target(l), φ ∧ c,m, p ∗ pc)

end if
if SAT(φ′ ∧ ¬c) then
probSymbolicExecute(next(l), φ ∧ ¬c,m, p ∗ (1− pc))

end if

To calculate the probabilities associated with branch out-
comes, our algorithm calculates two quantities. slice(φ, c)
computes the closure of the data dependence relation over
PC conjuncts beginning with c. In other words, it returns
the smallest subset of the conjuncts of φ that depend on c.
For example,

slice(x > 10 ∧ y > 10 ∧ z > x, z = 5)

returns x > 10 ∧ z > x but omits y > 10 because it alone
is independent of z = 5. The result is the independent
sub-formula of the PC that determines executability of the
branching statement l.

Next the conditional probability pc of the branch condi-
tion given the PC slice φ′ is calculated. The conditional
probability is then used to incrementally calculate the path
probability by multiplying it to the prior probability (p∗pc).
The use of PC slicing and conditional probability allows us
to calculate probabilities for significantly smaller formula
and to reuse the results of those calculations more readily
and, in fact, only the first call to prob(·) is required. For the
second branch outcome, we exploit the fact that the sum of
the conditional probabilities of the branch outcomes is 1 —
this allows us to avoid further calls to prob(·).

Issues such as exceptional behaviour in the program under
analysis does not influence the calculation of probabilities.
From SPF’s point of view, exceptions are simply regarded
as a special (but not unique) control flow mechanism within
the program.

In the remainder of this section we discuss the implemen-
tation and optimization of prob(·)

3.3 Calculating Path Condition Probabilities
Algorithm 2 allows for a variety of different approaches to

be applied to estimate the probability of executing a path
condition. We discuss one approach in this section that is
based on model counting.

Model counting is the problem of determining the number
of solutions of a given formula. While the complexity of
model counting varies with the theories used to express the
formula, the counting problem is at least as hard to solve as
the decision problem. In practice, counting algorithms have
not been studied and optimized as extensively as decision
algorithms and, consequently, they can be significantly more
expensive in practice.

While a range of model counting techniques could be used,
we explore the use of the LattE [31] toolset. LattE is well-
supported and implements state-of-the-art algorithms for

168

computing volumes, both real and integral, of convex poly-
topes [19, 16] as well as integrating functions over those
polytopes [4]. The former can be used to compute path
probabilities when input variables are drawn uniformly from
their type’s domain or a probability mass function is avail-
able for integral variables, and the latter when a probability
density function is available for real-valued variables. Our
discussion below focuses on the case of computing proba-
bilities for linear integer arithmetic (LIA) constraints over
variables whose values are uniformly distributed over their
type.

LattE accepts constraints expressed as a system of linear
inequalities each of which defines a hyperplane. Together,
the half-spaces defined by these hyperplane define a convex
polytope — an n-dimensional analog of a polyhedron. The
halfspace (H) representation is concisely encoded as the ma-
trix inequality: Ax ≤ B, where A is an m × n matrix of
coefficients and B is an n × 1 column vector of constants.
H-representations are a natural representation for the con-
junctive fragment of LIA except that it is not possible to
directly express disequality constraints, e.g., x 6= 0.

Most LIA constraints can easily be converted into the form
a1x1 + . . . anxn ≤ b. For example, ≥ and > can be flipped
by multiplying both sides by −1, and strict inequalities, <,
can be converted by decrementing the constant. In LattE
equalities can be expressed directly; there is no need to use
a pair of overlapping inequalities.

Algorithm 3 prob(φ ≡ ψ1 ∧ ψ2 ∧ . . . ∧ ψn)

cSet ← {ψ1, ψ2, . . . , ψn}
vars ← {v | ∃c ∈ cSet : v ∈ c}
deSet ← {d | d ∈ cSet ∧ d ≡ . . . 6= . . .}
ineqSet ← cSet − deSet
exSet ← {ineqSet ∧ (v = e) | v 6= e ∈ deSet}
count = count∧(

∧
ineqSet)− count∨(

∨
exSet)

return count/
∏

v∈vars dom(v)

Algorithm 3 calculates the probability for a PC by first
partitioning the constraints in the conjunction φ into in-
equalities (ineqSet) and disequalities (deSet). To support
disequalities, we calculate a set of constraints that encode
excluded solutions (exSet). We explain the handling of these
exclusion constraints (count∨(·)) in the next subsection.

If there are no disequalities then the calculation of exSet
results in an empty set and the count is the result of calling
LattE to count a conjunctive set of constraints (count∧(·)).
The count is returned as a probability by dividing by the
product of the variable domains (dom(·)) from the original
formula.

3.4 Disequality Constraints
In symbolic execution, constraints are always a conjunc-

tion of boolean valued terms. Thus, the obvious inability to
encode disjunctions in an H-representation does not present
a difficulty. Disequality constraints are another matter. A
natural encoding of a constraint α∧x 6= 0 using inequalities
is

(α ∧ x < 0) ∨ (α ∧ x > 0)

When a single disequality constraint is present, we can
exploit the structure of a symbolic execution to avoid the
need to handle disequality constraints at all. If a branch

condition is an equality constraint, then the negated condi-
tion is a disequality, but as shown in Algorithm 2 we need
not calculate the conditional probability of the negated con-
dition — we compute it from the probability of the original
condition. When the original condition is a disequality, we
simply explore its negation first.

The challenge lies in treating multiple disequality con-
straints in a single path condition. Consider the constraint
α ∧ (x 6= 0) ∧ (y 6= 0). These disequalities exclude solutions
of α where x, y or both x and y are 0. We can express these
excluded solutions as the disjunction of constraints:

α ∧ (x = 0)

α ∧ (y = 0)

α ∧ (x = 0) ∧ (y = 0)

Since we cannot count solutions for disjunctive constraints
directly, the solutions of the original constraint are counted
as follows:

count∧(α)−
(count∧(α ∧ (x = 0)) + count∧(α ∧ (y = 0))−

count∧(α ∧ (x = 0) ∧ (y = 0)))

The quantity on the first line is the total number of solutions.
The second and third lines subtract the excluded solutions
where either x or y is 0. Note that solutions where both x
and y are 0 are double-counted by the second line, so the
final constraint subtracts their total.

In general, we calculate the number of excluded solutions
for a constraint with n disequality constraints of the form

α ∧ (v1 6= ei) ∧ . . . ∧ (vn 6= en)

using the following variant of the Bonferroni inequalities [8]
which is adapted to compute counts instead of probabilities.

count∨(

n∨

i=1

φi) =
∑

I⊆{1,...,n}
(−1)|I|−1count∧(

∧

i∈I
φi) (1)

where φi ≡ α ∧ (vi = ei). In general, the combinatorics
of this equation leads to 2n calls to LattE to compute the
number of solutions of the combinations of the φi, but as
we discuss below this cost is amortized across the symbolic
execution by reusing already computed counts.

Returning to Algorithm 3 we see that the disequality con-
straints are handled by formulating a set of excluding equal-
ity constraints, one for each disequality, and passing their
disjunction to count∨(·). These are transformed, by equa-
tion 1, into a set of conjunctive constraints that are passed
off to LattE for solution.

3.5 Optimizing Model Counting
Automated decision procedures have become highly opti-

mized in large part because there is great demand from client
applications that seek to exploit their capabilities. Provid-
ing support for software testing, analysis and verification is
one area where they have enjoyed great success — symbolic
execution being a prime example.

Many of these applications only require a determination
of whether a formula is SAT or UNSAT, but a developing
body of work on quantitative system analyses [11, 22, 18]
demands support for providing richer information — model
counting techniques can provide this kind of information.

169

In a recent paper [20], researchers enhanced an SMT algo-
rithm for LIA to incorporate model counting. As a general
SMT algorithm their approach must consider the full set of
logical operators — including disjunction — which leads to
significant complexity in their solution. We take a different
approach that exploits the way that symbolic execution gen-
erates path conditions to optimize the use of model counters.

3.5.1 Count One, Infer the Other
The nature of symbolic execution is to explore both out-

comes of a conditional statement. In Algorithm 1 the sat-
isfiability of the positive branch outcome provides no in-
formation about the satisfiability of the negative outcome.
In general, two decision procedure calls are made at each
branch.

For the probabilistic case, since the model counter gives
us richer information we can do better. As shown in Algo-
rithm 2 we calculate the probability of one of the branch out-
comes — this may lead to several calls to the model counter
— then we calculate the probability of the other outcome
in terms of the first — thereby avoiding calls to the model
counter. In practice, this reduces the total number of calls
to the model counter during probabilistic symbolic execution
by nearly a factor of 2.

3.5.2 Slice, Normalize and Memoize
In Algorithm 1 the path conditions passed to SAT are

always distinct. Algorithm 2 differs in that regard due to
our use of PC slicing and the calculation of probabilities.

Consider the following path conditions:

α ∧ (x < 4) ∧ (z ≥ 1− x)

¬α ∧ (2(y − 1) ≤ 4) ∧ (1− z < y − 1)

Clearly these are distinct PCs, since they differ in the first
conjunct and they have different sets of variables.

If {x, z} ∩ vars(α) = ∅, then when symbolic execution
reaches the last branch of the first PC there is no need to
consider the first conjunct. This can significantly simplify
the constraint for model counting. If α involves two addi-
tional variables, then PC slicing reduces the dimension of
the polytope submitted to LattE by a factor of 2 — which
can lead to significant performance improvements.

If {x, y, z} ∩ vars(α) = ∅, then for either of these path
conditions when symbolically executing the last branch in
the condition the first — involving α — can be ignored. This
provides an additional opportunity for optimization. During
the process of converting PCs into systems of inequalities to
pass to LattE we normalize the constraints by putting them
into the form: a1x1 + . . . anxn ≤ b. We alphabetize the
variables when performing this normalization. Thus, the
resulting sub-constraints that are submitted to count∧(·) in
Algorithm 3 for the two PCs above are:

(x ≤ 3) ∧ (−x− z ≤ −1)

(y ≤ 3) ∧ (−y − z ≤ −1)

These constraints both result in the same H-representation
for LattE:

6 3

max 1 0

min -1 0

max 0 1

min 0 -1

3 1 0

-1 -1 -1

where the first line indicates the matrix size: the number
of inequalities by the number of variables plus one. The
first four inequalities encode the max and min values for a
variable based on its type — LattE is largely insensitive to
these values in terms of performance. The last two inequal-
ities express the two constraints.

Nowhere in the H-representation is the identity of a vari-
able encoded — it is simply not needed for counting the
solutions. This provides an opportunity for reusing solution
counts by detecting when an identical systems of inequali-
ties are generated. Applying slicing and normalization cre-
ates significant numbers of opportunities for reuse, and our
implementation of count∧(·) uses memoization to eliminate
unnecessary calls to LattE.

Memoization is useful for dealing with the complexities
introduced by disequality constraints as well. Since sym-
bolic execution incrementally extends PCs with additional
conjuncts as it moves along a path, the counts computed for
prefixes are memoized for use later in the path. Consider a
PC of the form:

α ∧ deq1 ∧ deq2 ∧ . . . deqn
where deqi are disequality constraints. When prob(·) is called
on this PC all of the combinations of excluded equality con-
straints that were needed to count the solutions to the prefix
of this without deqn have been memoized. This eliminates
the need to call LattE for half of the calls that would other-
wise be needed to evaluate equation 1.

3.5.3 Further Room for Improvement
In the course of our work, we have identified several op-

portunities for further increasing the performance of proba-
bilistic symbolic execution.

Model counting results can be used to determine satisfia-
bility. As shown in Algorithm 2, we still use decision proce-
dure calls to judge PC satisfiability. This is redundant, since
a model count that is non-zero implies satisfiability. As cur-
rently architected the use of model counting is hidden from
the symbolic execution algorithm, we plan to rearchitect our
system to avoid the use of SMT solver calls when the the-
ories involved in sliced path conditions permit exact model
counting.

Our normalization process is effective, but there are op-
portunities for further equivalence reductions on systems
of inequalities. A key feature of modern decision proce-
dures is their ability to transform a given formula to a form
that is simpler to solve, but preserves satisfiability — the
original and resulting formula are said to be equisatisfiable.
For model counting, transformations must preserve solution
count which is much more challenging. We plan to explore
different schemes for calculating canonical column and row
orderings for the H-representations. Simply reordering ma-
trix rows and columns is guaranteed to preserve solution
count and it provides the opportunity to identify more sliced
PCs as being equivalent. This will allow greater reuse of re-
sults from previous calls to count∧().

In the longer term, we believe that just as SMT solvers
have improved their performance based on an understand-

170

ing of the types of constraints that client applications wish
to solve, so to will model counters. We plan to share the
constraints from a broad range of probabilistic symbolic ex-
ecution experiments with the developers of LattE in an effort
to inspire this type of client-driven optimization.

4. APPLICATIONS
We implemented the analysis in Symbolic PathFinder [27],

the symbolic execution framework of JavaPathFinder [32].
The core of our system is a JPF Listener, that calculates
the probabilities whenever a branch is found feasible. This
listener invokes LattE to obtain the size of the current path
condition using the domain size for each variable if provided
and defaults otherwise. The complete system is approxi-
mately 1000 lines of code.

All examples are evaluated on a Mac Air 1.7 Ghz (Intel
Core i5) with 4Gb of memory and running OSX 10.7.2. Our
main aim in the evaluation is to see if the system can han-
dle non-trivial code and secondly whether it can be an aid
during testing. We therefore chose the container examples1

from [33] which were also the focus of a number of follow-up
research efforts: (a) [30] which showed that random testing
performs very well for obtaining coverage in these examples
and (b) [9] that showed, amongst other things, that the Bi-
nomialHeap example contains a bug. BinomialHeap might
only be a few hundred lines of code, but to trigger the error
a sequence of 14 API calls is required. Specifically we con-
sider BinomialHeap, TreeMap (implementation of red-black
trees), and BinaryTree in our analysis.

In the following we first show some applications of the
probability analysis and then in Section 4.1 we evaluate the
usefulness of the optimizations of path condition slicing and
memoization.

Our experimental setup involved calculating the probabil-
ity of reaching branches in the code. We used only add(n)

and delete(n) (or equivalent calls) from a container where
the length of the sequence of calls and the range of values
for the parameter n can be set. For each coverage location
in the code we calculate exactly all the path conditions that
reach the location as well as the probability of that happen-
ing (i.e., for each location there is a map to a list of <PC,
prob> pairs). From this list we then calculate the following
probabilities for each location:

Precise – The exact probability for reaching this code which
is calculated as the probability of the disjunction of the
path conditions reaching the location.

Sum – The sum of the probabilities for reaching the loca-
tion.

In addition we also use the data to calculate the least likely
path(s) through the code. Note there could be more than
one equally unlikely path.

During the evaluation it quickly became obvious that the
Precise probability of reaching a location is very expensive
to calculate using LattE due to the exponential blow-up re-
quired to handle disjunctions (see equation 1 in Section 3.4).
If there are n paths reaching a location, then in general one

1These examples are available from http://
javapathfinder.svn.sourceforge.net/viewvc/
javapathfinder/trunk/examples/issta2006/

1 void bar(int x) {
2 foo(x);
3 if (x < 6) foo(x);
4 }
5

6 void foo(int x) {
7 if (x < 5) loc = 1;
8 }

Figure 2: Example where Precise < Sum

1 void runTest(int[] options , int limit) {
2 Container c = new Container ();
3 int round = 0;
4 while (round < limit) {
5 if (options[round] == 1)
6 c.add(options[limit + round]);
7 else
8 c.delete(options[limit + round]);
9 round ++;

10 }
11 }
12

13 void runTestDriver(int length) {
14 int[] values = new int[length *2];
15 int i = 0;
16 while (i < 2* length) {
17 if (i < length)
18 values[i] = makeSymInt("c" + i);
19 else
20 values[i] = makeSymInt("v" + i);
21 i++;
22 }
23 runTest(values ,length);
24 }

Figure 3: Test Driver Code for Containers

needs 2n calls to LattE to calculate the probability of reach-
ing the location; the probability is calculated on the disjunc-
tion of the n path conditions. However, it was also apparent
from our examples that most of the time Precise = Sum.

Consider the example in Figure 2. From the point where
the bar routine is invoked, there are two paths that reach
the loc = 1 assignment in line 7: for the first path the PC
is A = x < 5; for the second the PC is B = x < 6∧x < 5. If
we assume that x ∈ 0 . . . 9, then prob(A) = prob(B) = 0.5,
but also prob(A ∧ B) = 0.5. Consequently, Precise = 0.5,
whereas Sum = prob(A) + prob(B) = 1.0. In this case,
Precise < Sum because the path corresponding to B is an
extension of the path corresponding to A. However, it is
often the case that locations can be reached along different
paths that can take either branch at a conditional (since that
condition is not relevant in reaching the target location), and
in those cases the probability of their conjunction is zero
(A ∧B = false and prob(A ∧B) = 0).

Note that when slicing the path conditions to obtain only
the part relevant to the current condition (see Section 3.2)
works well it means some conditions along the path don’t
influence the current condition, which is also when the sum
is a good approximation for the precise probability. In our
results we therefore don’t show the precise probability, but
rather the sum of the probabilities.

Figure 3 shows the code we use to run the analysis of a
container. An important point is that we encode the choice

171

of whether to add or delete as a condition over a variable
(c) of domain [1, 2] and the values to be used with a variable
(v) of domain [0 . . . n] where n can be varied (n is not shown
in the driver code since the domain specification is given to
our analysis in the JPF start-up configuration). We create
the symbolic variables using recognizable names within the
code (lines 18 and 20) which allows us to interpret the path
conditions as a sequence after analysis.

It is important to distinguish the probability of an in-
put sequence and the probability of a path. We work on
the assumption that all input sequences (in other words a
sequences of (c, v) pairs) have the same probability. For ex-
ample, for the domain [0 . . . 9] and three operations, each
sequence of adds/deletes has a probability of 1/(2× 10)3 =
1/8000. Of course, the sequences are not handled individu-
ally, but, because the variables are symbolic, in sets. On the
other hand, generally speaking the probability of a partic-
ular path (or equivalently, a path condition) is determined
by the structure of the code, the structure of the input, and
the domain sizes.

Finding a Bug using the Most Unlikely Paths The
first analysis we report on here is the most unlikely paths
for BinaryTree for sequence length of 4 and value domain
[0 . . . 9] (the calls of interest are insert and delete). The
code is shown in Figure 4 and the probabilities of reach-
ing the different branches is shown as comments. Note, the
probabilities are the path probability for reaching the branch
and since some of them are within while loops it is possible
that the two sides of an if can add up to a probability larger
than one. The following 4 sequences are returned as equally
most unlikely (the analysis took 7m07s):

1. insert(x); delete(x); insert(x); delete(x);

2. insert(x); insert(x); insert(x); delete(x);

3. insert(x); insert(x); delete(x); delete(x);

4. insert(x); delete(x); delete(x); delete(x);

The first observation is that the same element, x, is added
and deleted all the time. This can be explained simply by
observing that if there is any equality check in the code it
is very unlikely to always have the same value in the check.
Although the first sequence seems quite plausible, the second
is not so obvious since once you added an element it will
not be added again. However a glance at the code for insert
shows a while loop checking if the current element is unequal
to the one being added. The negation of this check states
that the two values should be equal, thus if you insert a
value it is extremely unlikely to try and insert the same value
again and if you do you will take the negated branch. Note
however that the last delete is less likely than trying to insert
the same element again. As can be seen from the probability
annotations in Figure 4 there are branches in delete that
has lower probability than any in insert. A similar situation
occurs in all the containers we analyzed, and will be further
elaborated on in the next example below. This brings us to
the two sequences (3 and 4) that are not obvious at all: one
would think that once you deleted an element and the tree is
empty, doing another delete will be useless. Put differently,
trying to delete something from an empty tree should be a
very likely action, so why is it part of the unlikely sequences?
Looking at the code for delete a bug is discovered: the root
node is never deleted. This bug is in the original code used

1 public void add(int x) {
2 Node current = root;
3

4 if (root == null) { // .9375
5 root = new Node(x);
6 return;
7 }
8

9 while (current.value != x) {
10 if (x < current.value) {
11 if (current.left == null) // .4592
12 current.left = new Node(x);
13 else // .5745
14 current = current.left;
15 } else {
16 if (current.right == null) // .4592
17 current.right = new Node(x);
18 else // .5745
19 current = current.right;
20 } } }
21

22 public boolean remove(int x) {
23 Node current = root;
24 Node parent = null;
25 boolean branch = true;
26

27 while (current != null) {
28 if (current.value == x) {
29 Node n = current;
30 while (n.left!=null||n.right!=null){
31 parent = n;
32 if (n.right != null) {// .0196
33 n = n.right;
34 branch = false;
35 } else { // .0181
36 n = n.left;
37 branch = true;
38 } }
39 // FIX if (current == root) {
40 // FIX root = null;
41 // FIX return true;
42 // FIX }
43 if (parent != null) {
44 if (branch) // .0346
45 parent.left = null;
46 else // .0361
47 parent.right = null;
48 }
49 if (n != current) { // .0361
50 current.value = n.value;
51 } // else .1077
52 return true;
53 }
54 parent = current;
55 if (current.value > x) { // .5745
56 current = current.left;
57 branch = true;
58 } else { // .5745
59 current = current.right;
60 branch = false;
61 } }
62 return false;
63 }

Figure 4: BinaryTree with probabilities [0..9]

172

in [33], but was not detected at the time. Once fixed the
following 4 sequences emerge as the most unlikely:

1. insert(x); insert(y); insert(y); delete(y); with y < x

2. insert(x); insert(y); insert(y); delete(y); with y > x

3. insert(x); insert(y); insert(y); delete(x); with y < x

4. insert(x); insert(y); insert(y); delete(x); with y > x

From this we learn simply that deleting something that you
inserted before is unlikely, and if you insert the same thing
twice before deleting that is even more unlikely.

Coverage Probability Next we consider how the proba-
bility of obtaining a certain degree of code coverage changes
when the domain of the input variables change. For this
we consider the BinomialHeap container and again use a
sequence length of 4 but with increasing variable ranges
[0 . . . 9], [0 . . . 49], [0 . . . 99] and [0 . . . 499]. This analysis took
57s for each range; note the time is independent of the vari-
able ranges. The results are presented in Table 1 and as
stated before we only show the sum of the probabilities of
reaching a coverage location (representing branch coverage
precisely as in [33]). We only show probabilities rounded off
for presentation purposes, but in the implementation we use
the APfloat Java package (http://www.apfloat.org) with
a precision of 500 digits.

The Loc column refers to the location in the code, PCs in-
dicate with how many unique path conditions did we reach
the location, the following 4 column show the (approximate)
probability of reaching the location with varying variable
ranges and lastly we ran random tests for the [0 . . . 499]
range first a 1000 times and then 10000 times to validate
the probability results in the 0 . . . 499 column (we also accu-
mulated the results from running it a 1000 times each, i.e.,
the first one was actually run 106 times and the second one
107 times). The values in the two random columns are the
number of times the location was reached during the ran-
dom runs. Note that the gaps in the table are for locations
that cannot be reached by sequences of length 4 (with the
exception of location 12 which was removed since it didn’t
represent a branch).

For the top half of the table, until location 10, the proba-
bility of reaching the location increases as the variable ranges
become larger, but for the bottom half of the table from loca-
tion 13 to 21 the probability decreases as the range increases.
Looking at the code it turns out that the locations numbered
below 13 are part of code that gets executed during both in-
sert and delete operations, whereas the rest is executed only
during delete operations. Branches within the delete opera-
tion therefore becomes less and less likely to be executed as
the data domain increases. This makes intuitive sense, since
delete operations tend to involve comparisons with existing
data and only deletes when an element is found that was
previously inserted, which is less likely to happen if a large
domain is used to insert and delete from.

The last two columns in Table 1 represents running ran-
domly chosen sequences (and parameters from the [0 . . . 499]
range) of length 4 and it can be seen that in both the 1000
and 10, 000 run case we hardly ever executed any of the
statements related to delete-only. Location 19 which is the
least likely one to be covered, wasn’t reached in either ran-
dom set of runs. If it is the case that delete-related locations
are less likely to be covered then one should really skew the

random sequences to make deletes more likely to enable bet-
ter coverage. When we skewed the last operation to be a
delete with a probability above 0.9 then we cover all the
locations in Table 1. This is an example where the prob-
ability results enabled a better strategy for obtaining high
coverage.

Of course, to obtain better coverage one can also increase
the sequence length. This observation is supported by our
analysis: for example when going to sequence length 5, then
all locations become more likely to be covered for the same
variable domain as sequence length 4. However the same
trends also hold in that deleted-related locations become
less likely to be covered for larger variable domains.

Probability of bugs The BinomialHeap example con-
tains a bug, as reported by [9]. This bug requires a se-
quence length of 13 inserts and then a delete (variations are
possible, but this is the shortest sequence to show the bug).
Our technique cannot scale to 14 operations as yet, so we
hardcoded the sequence operations, but left the parameters
symbolic. We also added a test after the sequence to see if
the bug was triggered; if so a special coverage location was
reached. The coverage results indicated that the bug was
triggered with exactly the same probability as location 5 (in
the merge helper method) being reached. On further investi-
gation by doing random sequences based on the probability
values, we discovered that in fact it seems location 5 is only
reached on buggy sequences. Although we don’t yet know
exactly what the bug is, it seems the error is dependent on
location 5 being reached. In [9] it is stated that the error is
in the extractMin helper method2. The probability calcula-
tions seems therefore to also be of value in fault localization.
Note also that location 5 is in the merge helper method and
is reached when the condition is false to an if that has no
else branch; it definitely seems like there is some missing
code that needs to go in the else case.

4.1 Optimizations
In Section 3.2 and Section 3.5 slicing and memoization are

introduced and in this section we will evaluate the perfor-
mance improvement these two optimizations provide.

Table 2 shows the results for the optimizations on Bino-
mialHeap and TreeMap both with a sequence length of 4.
Again note that the variable domain plays no role in the per-
formance. For each subject we show the optimizations (slic-
ing and/or memoization) that is switched on (4) and off (7)
in the analysis. We don’t believe switching them both off is
worth the effort, since is it is rather clear that would take
a very long time to complete. The columns show the Sub-
ject, the reduction percentage in the cumulative sizes of the
path conditions (PC Red) and the number of variables (Var
Red) in the path conditions achieved by slicing, Probs indi-
cate the number of probabilities that was calculated, LattE
the number of times the LattE solver was invoked, Mem-
oized indicates the number of times the result was already
calculated and thus LattE didn’t need to be invoked and
lastly the time spent in the LattE solver (LattE time) and
the Total time (both in seconds).

The results show that both optimizations are important
for making the technique tractable, but clearly slicing plays a
significantly larger role in improving the performance. Switch-
ing memoization off increases the runtime by 1.47× for Bi-

2From personal communications we know that they also be-
lieve it is in merge that is called by extractMin

173

Table 1: Probability of covering branches in BinomialHeap
Loc PCs 0 . . . 9 0 . . . 49 0 . . . 99 0 . . . 499 Random 1000 Random 10000

1 32 6.4451×10−1 7.2973×10−1 7.3993×10−1 7.4799×10−1 817123 8213625
4 14 2.2831×10−1 2.9414×10−1 3.0322×10−1 3.1062×10−1 412440 4139439
6 30 6.0350×10−1 6.7208×10−1 6.7989×10−1 6.8599×10−1 445493 4449974
7 16 2.6932×10−1 3.5179×10−1 3.6326×10−1 3.7263×10−1 784070 7903090
8 14 2.2831×10−1 2.9414×10−1 3.0322×10−1 3.1062×10−1 412440 4139439
9 34 3.8161×10−1 4.0192×10−1 4.0412×10−1 4.0583×10−1 764453 7698128

10 32 3.0389×10−1 3.8546×10−1 3.9584×10−1 4.0416×10−1 424300 4279148
13 8 7.6499×10−3 2.2814×10−3 1.1945×10−3 2.4775×10−4 0 1
14 54 1.1863×10−1 2.6729×10−2 1.3556×10−2 2.7422×10−3 1 1
15 8 7.6499×10−3 2.2814×10−3 1.1945×10−3 2.4775×10−4 0 1
16 36 5.5518×10−2 1.4164×10−2 7.2893×10−3 1.4915×10−3 1 1
17 22 6.6206×10−2 1.3669×10−2 6.8555×10−3 1.3742×10−3 0 1
18 28 4.7868×10−2 1.1882×10−2 6.0947×10−3 1.2437×10−3 1 0
19 4 4.5562×10−3 1.1764×10−3 6.0643×10−4 1.2425×10−4 0 0
20 8 7.6499×10−3 2.2814×10−3 1.1945×10−3 2.4775×10−4 0 1
21 18 2.6099×10−2 7.0089×10−3 3.6261×10−3 7.4500×10−4 1 0

Table 2: Slicing and Memoization Optimizations
Subject Memoization Slicing PC Red Var Red Probs LattE Memoized LattE time (s) Total time (s)

Binomial 4 4 55% 67% 634 518 370 35 57
7 4 55% 67% 634 888 0 61 84
4 7 0% 0% 634 3160 698 388 414

TreeMap 4 4 44% 55% 766 2264 562 118 145
7 4 44% 55% 766 2826 0 150 178
4 7 0% 0% 766 12108 4965 1028 1056

nomialHeap and 1.23× for TreeMap, but switching slicing
off increases runtime for both examples by 7.3×!

This is due to the fact that slicing has two benefits. First,
it results in smaller sliced PCs which in turn leads to smaller
inequality systems, both in terms of the number of inequal-
ities and the number of variables, that are passed to LattE.
Without slicing (i.e., memoization only) does not reduce the
size of the PC. LattE’s runtime is known to be strongly de-
pendent on both the number of inequalities and the dimen-
sion of the polytope [4], so this helps performance. Second,
when PCs are sliced there are more opportunities for mem-
oization to reuse computations from different parts of the
symbolic execution tree. Without slicing this type of reuse
would not be possible, since paths that differ in some branch
would never be amenable to memoization.

Memoization can exploit the opportunities presented by
slicing, but memoization also helps mitigate the combinato-
rial blowup in calls to LattE due to the presence of disequal-
ities even when slicing is disable. The data bear this out.
When slicing is disabled for TreeMap 4695/17073 (29%) of
the LattE calls are memoized – this memoization is due ex-
clusively to the presence of disequality constraints. With
slicing enabled only 562/2826 (19.8%) of the LattE calls are
memoized. This drop in the percentage of memoized calls is
because now memoization happens on the sliced PCs, short-
circuiting the need to memoize the combinatorially many
calls due to disequalities that arise in evaluating Equation 1.

Currently Symbolic PathFinder does not support slicing
for regular feasibility checks, but on the strength of these
reductions we intend to introduce this optimization also for
classic symbolic execution.

5. RELATED WORK
Our work can be seen as a form of profiling. The idea of

path profiling is not new [7, 28]. So-called “hot paths” are
useful for optimization (especially branch prediction) and
test generation, and researchers have used profiling [1], static
analysis [3], and — most recently — symbolic execution [18,
20] to determine which paths are hot. The latter work is
clearly the closest to our own. The authors’ starting point
is the calculation of path frequencies. They use symbolic
execution to generate path conditions and volume computa-
tion to calculate the frequencies and, later, path probabili-
ties. Unfortunately, the description is quite brief (only four
pages) and while they mention the possibility of PC slicing,
they do not develop it nor memoization which make such a
significant difference in our work.

One view of our work is as an enhanced form of static
analysis. Garbervetsky et al. [10, 11] use a form of model
counting similar to ours to calculate the number of visits to
an allocation site which is then used to predict memory re-
gions associated with Java methods. A conjunction of local
invariants along a control path is taken and model count-
ing is used to derive from this a parameterized formula that
counts the number of solutions to the conjunction.

Another view of our work is that we enhance the semantics
of programs with probabilities. Others have taken a more
formal approach to this idea: Morgan and McIver extend
weakest precondition analysis [23] while Monniaux bases his
work on denotational semantics [22]. Unfortunately this
work remains limited to manual analyses. It is worth point-
ing out that this work (and ours) is different from probabilis-
tic model checking [17], where the probabilities associated

174

with transitions are known a priori, even though some of the
questions it addresses may be similar.

Model counting is frequently used for Artificial Intelli-
gence problems (such as bounded-length adversarial and con-
tingency planning, and probabilistic reasoning, including Ba-
yesian net reasoning [29]) and for hard combinatorial prob-
lems, such as combinatorial designs. Gomes et al. [12] is a
good survey of model counting and its applications.

We showed two applications of our work related to testing:
probability of obtaining coverage and bug finding/localiza-
tion. Random testing is a well studied field and it works
on the assumption that the probability of obtaining good
coverage is fairly high (see [30] for an extensive survey on
how well random testing works for containers, including the
ones used in this paper). Our work can be seen as an ap-
proach to quantify just how well random testing will work
for a specific program. Bug localization is an equally well
studied field and the spectrum based techniques (for exam-
ple, see Tarantula [14]) focussing on the suspiciousness of
a statement is most closely related to our approach. The
basic approach is to consider how often a line of code ap-
pears in failing and passing runs. We believe probabilities
can greatly enhance this form of fault localization.

6. CONCLUSION AND FUTURE WORK
Recent years have witnessed an increasing trend in pro-

gram analyses targetted at non-functional properties. For
example, several researchers [2, 13, 36] have used symbolic
execution to attempt to characterize the performance of pro-
grams. This requires a shift from asking questions about
whether a program execution is possible or not – a deci-
sion question – to quantifying characteristics of a program
executions.

In this paper, we have introduced an approach that ex-
tends symbolic execution to perform a specific type of quan-
titative analysis – the calculation of path probabilities. We
believe that there are many possible applications for such
an analysis and we have illustrated three such applications
in this paper. One might also imagine adapting existing ap-
proaches to differential program analysis [25, 26] to prioritize
the analysis of program differences that are most likely to
be executed. There have been several approaches suggested
in the literature for directing symbolic execution to more
profitable portions of the execution tree using heuristics [35,
21]. It may be fruitful to explore how probabilities com-
puted during symbolic execution might direct the progress
symbolic execution. For example, to bias test generation to
unlikely execution paths.

Our probabilistic symbolic execution extension now forms
part of the standard release of SPF. Scalability is an issue:
our technique is more expensive than“pure” symbolic execu-
tion, but any program that can be analysed with the latter,
is also amenable to the former. Moreover, the cost of invok-
ing LattE is, in our experience, independent of the variable
domain sizes. We plan to explore several further optimiza-
tions to its performance. We have, for instance, prototyped
schemes for computing different canonical column and row
orders to increase the effectiveness of memoization. We also
have prototyped a new form of symmetry reduction that
has the potential to significantly reduce execution cost. In
addition to performance optimizations, we plan to extend
the model counter support with more theories, e.g., Lin-
ear Real Arithmetic and Strings, and to support probability

mass and distribution functions using LattE’s integration
support. Currently we also don’t support references, but we
believe an extension to support lazy initialization of refer-
ence types as in [15] is not hard.

Finally, the experience of classic symbolic execution has
taught us that there will always be programs for which deci-
sion procedure support is lacking. We expect model count-
ing to be limited in much the same way, thus we will explore
the use of statistical sampling techniques to provide proba-
bility estimates in cases where model counting is ineffective.
This will allow for a type of symbolic-concrete probabilistic
symbolic execution.

7. ACKNOWLEDGMENTS
We would like to thank Steve Kroon, Aline Uwimbabazi,

and Brink van der Merwe for fruitful discussions about the
development of the ideas in this paper. Matthew Dwyer’s
work was supported, in part, by a Research Award from the
United State’s Fulbright Scholar Program to visit Stellen-
bosch University, South Africa and by the AFOSR under
Award #FA9550-10-1-0406.

8. REFERENCES
[1] T. Ball and J. R. Larus. Efficient path profiling. In

Proceedings of the 29th Annual IEEE/ACM
International Symposium on Microarchitecture, pages
46–57. IEEE, Dec. 1996.

[2] J. Burnim, S. Juvekar, and K. Sen. Wise: Automated
test generation for worst-case complexity. In
Proceedings of the 31st International Conference on
Software Engineering, pages 463–473, May 2009.

[3] R. P. L. Buse and W. Weimer. The road not taken:
Estimating path execution frequency statically. In
Proceedings of the 31st International Conference on
Software Engineering, pages 144–154. ACM, May
2009.

[4] J. A. De Loera, B. Dutra, M. Köppe, S. Moreinis,
G. Pinto, and J. Wu. Software for exact integration of
polynomials over polyhedra. arXiv:1108.0117v2
[math.MG], 2011.

[5] L. de Moura and N. Bjørner. Z3: An efficient SMT
solver. In Proceedings of the 14th International
Conference on Tools and Algorithms for the
Construction and Analysis of Systems, LNCS #4963,
pages 337–340. Springer, 2008.

[6] R. A. DeMillo and A. J. Offutt. Constraint-based
automatic test data generation. IEEE Trans. Software
Eng., 17(9):900–910, Sept. 1991.

[7] J. A. Fisher. Trace scheduling: A technique for global
microcode compaction. IEEE Trans. Computers,
C–30(7):478–490, July 1981.

[8] J. Galambos and I. Simonelli. Bonferroni-Type
Inequalities with Applications. Springer-Verlag, 1996.

[9] J. P. Galeotti, N. Rosner, C. L. Pombo, and M. F.
Frias. Analysis of invariants for efficient bounded
verification. In Proceedings of the 19th International
Symposium on Software Testing and Analysis, pages
25–36, July 2010.

[10] D. Garbervetsky, S. Yovine, V. A. Braberman,
M. Rouaux, and A. Taboada. On transforming
Java-like programs into memory-predictable code. In

175

Proceedings of the 7th International Workshop on
Java Technologies for Real-Time and Embedded
Systems, pages 140–149. ACM, Sept. 2009.

[11] D. Garbervetsky, S. Yovine, V. A. Braberman,
M. Rouaux, and A. Taboada. Quantitative
dynamic-memory analysis for Java. Concurrency and
Computation: Practice and Experience,
23(14):1665–1678, Sept. 2011.

[12] C. P. Gomes, A. Sabharwal, and B. Selman. Model
counting. In Handbook of Satisfiability, volume 185 of
Frontiers in Artificial Intelligence and Applications,
pages 633–654. IOS Press, 2009.

[13] S. Gulwani. SPEED: Symbolic complexity bound
analysis. In Proceedings of the 21st International
Conference on Computer Aided Verification, LNCS
#5643, pages 51–62. Springer, June–July 2009.

[14] J. A. Jones and M. J. Harrold. Empirical evaluation of
the tarantula automatic fault-localization technique.
In Proceedings of the 20th IEEE/ACM international
Conference on Automated Software Engineering, pages
273–282. ACM, Nov. 2005.

[15] S. Khurshid, C. S. Păsăreanu, and W. Visser.
Generalized symbolic execution for model checking
and testing. In Proceedings of the 9th International
Conference on Tools and Algorithms for the
Construction and Analysis of Systems, LNCS #2619,
pages 553–568. Springer, Apr. 2003.

[16] M. Köppe. A primal Barvinok algorithm based on
irrational decompositions. SIAM J. Discrete Math.,
21(1):220–236, 2007.

[17] M. Z. Kwiatkowska, G. Norman, and D. Parker.
PRISM 4.0: Verification of probabilistic real-time
systems. In Proceedings of the 23rd International
Conference on Computer Aided Verification, LNCS
#6806, pages 585–591. Springer, July 2011.

[18] S. Liu and J. Zhang. Program analysis: from
qualitative analysis to quantitative analysis. In
Proceedings of the 33rd International Conference on
Software Engineering – NIER Track, pages 956–959.
ACM, May 2011.

[19] J. A. D. Loera, R. Hemmecke, J. Tauzer, and
R. Yoshida. Effective lattice point counting in rational
convex polytopes. J. Symb. Comput., 38(4):1273–1302,
Oct. 2004.

[20] F. Ma, S. Liu, and J. Zhang. Volume computation for
Boolean combination of linear arithmetic constraints.
In Proceedings of the 22nd International Conference
on Automated Deduction, LNCS #5663, pages
453–468. Springer, Aug. 2009.

[21] K.-K. Ma, K. Yit Phang, J. Foster, and M. Hicks.
Directed symbolic execution. In Proceedings of the
18th International Static Analysis Symposium, LNCS
#6887, pages 95–111. Springer, Sept. 2011.

[22] D. Monniaux. Abstract interpretation of probabilistic
semantics. In Proceedings of the 7th International
Static Analysis Symposium, LNCS #1824, pages
322–339. Springer, June 2000.

[23] C. C. Morgan and A. K. McIver. pGCL: Formal

reasoning for random algorithms. South African Comp
Jnl, 22:14–27, Mar. 1999.

[24] G. J. Myers. Art of Software Testing. John Wiley &
Sons, Inc., 1979.

[25] S. Person, M. B. Dwyer, S. Elbaum, and C. S.
Pǎsǎreanu. Differential symbolic execution. In
Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
pages 226–237, Nov. 2008.

[26] S. Person, G. Yang, N. Rungta, and S. Khurshid.
Directed incremental symbolic execution. In
Proceedings of the 32nd ACM SIGPLAN conference
on Programming Language Design and
Implementation, pages 504–515, June 2011.

[27] C. S. Păsăreanu and N. Rungta. Symbolic PathFinder:
symbolic execution of Java bytecode. In Proceedings of
the IEEE/ACM International Conference on
Automated Software Engineering, pages 179–180.
ACM, Sept. 2010.

[28] G. Ramalingam. Data flow frequency analysis. In
Proceedings of the ACM SIGPLAN’96 Conference on
Programming Language Design and Implementation,
pages 267–277, May 1996.

[29] T. Sang, P. Beame, and H. A. Kautz. Performing
Bayesian inference by weighted model counting. In
Proceedings of the 20th National Conference on
Artificial Intelligence and the 17th Innovative
Applications of Artificial Intelligence Conference,
pages 475–482. AAAI Press / The MIT Press, July
2005.

[30] R. Sharma, M. Gligoric, A. Arcuri, G. Fraser, and
D. Marinov. Testing container classes: Random or
systematic? In Proceedings of the 14th International
Conference on Fundamental Approaches to Software
Engineering, LNCS #6603, pages 262–277. Springer,
Mar.–Apr. 2011.

[31] UC Davis, Mathematics. Latte integrale.
http://www.math.ucdavis.edu/~latte.

[32] W. Visser, K. Havelund, G. P. Brat, S. Park, and
F. Lerda. Model checking programs. Autom. Softw.
Eng., 10(2):203–232, Apr. 2003.

[33] W. Visser, C. S. Păsăreanu, and R. Pelánek. Test
input generation for Java containers using state
matching. In L. L. Pollock and M. Pezzè, editors,
Proceedings of the ACM/SIGSOFT International
Symposium on Software Testing and Analysis, pages
37–48. ACM, July 2006.

[34] R. Williams. Triangle classification problem.
http://russcon.org/triangle_classification.html.

[35] T. Xie, N. Tillmann, J. de Halleux, and W. Schulte.
Fitness-guided path exploration in dynamic symbolic
execution. In Proceedings of the 2009 IEEE/IFIP
International Conference on Dependable Systems and
Networks, pages 359–368, June–July 2009.

[36] P. Zhang, S. G. Elbaum, and M. B. Dwyer. Automatic
generation of load tests. In Proceedings of the 26th
IEEE/ACM International Conference on Automated
Software Engineering, pages 43–52, Nov. 2011.

176

